
37

L16:	Transactions	&	Concurrency	Control
Part	1:	Transactions	&	Logging
Part	2:	Concurrency	Control

CS3200 Database	design	(sp18 s2)
https://course.ccs.neu.edu/cs3200sp18s2/
3/15/2018

38

Announcements!

• Exam2 next	week:	content	is	everything	seen	until	today:	setup	like	for	
Exam1:	laptop	SQL	+	paper	database	design	+	paper	transactions

• Posted:	ER	examples,	HW4 example	solutions	and	FMs,	Q8 for	next	week
• Outline	today
- Transactions
- Concurrency	control

39

Challenges	for	ACID	properties

• In	spite	of	failures:	Power	failures,	but	not	media	failures

• Users	may	abort	the	program:	need	to	“rollback the	changes”
- Need	to	log what	happened

• Many	users	executing	concurrently
- Can	be	solved	via	locking

And	all	this	with…	Performance!!

40

A	Note:	ACID	is	contentious!

• Many	debates	over	ACID,	both	
historically	and	currently

• Many	newer	“NoSQL”	DBMSs	relax	
ACID

• In	turn,	now	“NewSQL”	
reintroduces	ACID	compliance	to	
NoSQL-style	DBMSs…

ACID	is	an	extremely	important	&	successful	
paradigm,	but	still	debated!

41

Our	first	Goal:	Ensuring	Atomicity	&	Durability

• Atomicity:
- TXNs should	either	happen	completely	

or	not	at	all
- If	abort	/	crash	during	TXN,	no	effects	

should	be	seen

• Durability:
- If	DBMS	stops	running,	changes	due	to	

completed	TXNs should	all	persist
- Just	store	on	stable	disk

ACID

TXN	1

TXN	2

No changes	
persisted

All changes	
persisted

We’ll	focus	on	how	to	accomplish	atomicity	(via	logging)

Crash	/	abort

42

The	Log

• Is	a	list	of	modifications

• Log	is	duplexed	and	archived on	stable	storage.

• Can	force	write entries	to	disk
- A	page	goes	to	disk.

• All	log	activities	handled	transparently by	the	DBMS.

Assume	we	
don’t	lose	it!

43

Basic	Idea:	(Physical)	Logging

• Record	UNDO	information	for	every	update!
- Sequential	writes	to	log
- Minimal	info	(diff)	written	to	log

• The	log	consists	of	an	ordered	list	of	actions
- Log	record	contains:	

• <XID,	location,	old	data,	new	data>	

This	is	sufficient	to	UNDO	any	transaction!

44

Why	do	we	need	logging	for	atomicity?

• Couldn’t	we	just	write	TXN to	disk	only	once whole	TXN complete?
- Then,	if	abort	/	crash	and	TXN not	complete,	it	has	no	effect- atomicity!
- With	unlimited	memory	and	time,	this	could	work…

• However,	we	need	to	log	partial	results	of	TXNs because	of:
- Memory	constraints	(enough	space	for	full	TXN??)
- Time	constraints	(what	if	one	TXN takes	very	long?)

We	need	to	write	partial	results	to	disk!
…And	so	we	need	a	log to	be	able	to	undo these	partial	results!

45

3.	Atomicity	&	Durability	via	Logging

An	animation	of	commit	protocols

46

A	picture	of	logging

Data	on	Disk

Main	Memory

Log	on	Disk

LogA=0

B=5

A=0

T	

T:	R(A),	W(A)	

47

A	picture	of	logging

Data	on	Disk

Main	Memory

Log	on	Disk

LogA=1

B=5

A=0

A:	0à1

Operation	
recorded	in	log	in	
main	memory!

T	

T:	R(A),	W(A)	

48

What	is	the	correct	way	to	write	this	all	to	disk?

• We’ll	look	at	the	Write-Ahead	Logging	(WAL) protocol

• We’ll	see	why	it	works	by	looking	at	other	protocols	which	are	incorrect!

Remember:	Key	idea	is	to	ensure	durability	
while	maintaining	our	ability	to	“undo”!

49

Write-Ahead	Logging	(WAL)
TXN	Commit	Protocol

50

Transaction	Commit	Process

• FORCE	Write	commit	record	to	log

• All	log	records	up	to	last	update	from	this	TX	are	FORCED

• Commit()	returns

Transaction	is	committed	once	commit	log	
record	is	on	stable	storage

51

Incorrect	Commit	Protocol	#1

Data	on	Disk

Main	Memory

Log	on	Disk

LogT	 A=1

B=5

A=0

T:	R(A),	W(A)	 A:	0à1

Let’s	try	committing	
before we’ve	written	
either	data	or	log	to	
disk…

OK,	Commit!

52

Incorrect	Commit	Protocol	#1

Data	on	Disk

Main	Memory

Log	on	Disk

LogT	 A=1

B=5

A=0

T:	R(A),	W(A)	 A:	0à1

Let’s	try	committing	
before we’ve	written	
either	data	or	log	to	
disk…

If	we	crash	now,	is	T	
durable?

OK,	Commit!

Lost	T’s	update!

53

Incorrect	Commit	Protocol	#2

Data	on	Disk

Main	Memory

Log	on	Disk

LogT	 A=1

B=5

A=0

T:	R(A),	W(A)	 A:	0à1

Let’s	try	committing	
after we’ve	written	
data	but	before we’ve	
written	log	to	disk…

OK,	Commit!

54

Incorrect	Commit	Protocol	#2

Data	on	Disk

Main	Memory

Log	on	Disk

LogT	
B=5

T:	R(A),	W(A)	 A:	0à1

Let’s	try	committing	
after we’ve	written	
data	but	before we’ve	
written	log	to	disk…

If	we	crash	now,	is	T	
durable?		Yes!		Except…

OK,	Commit!

How	do	we	know	
whether	T	was	
committed??

A=1

55

Improved	Commit	Protocol	(WAL)

56

Write-ahead	Logging	(WAL)	Commit	Protocol

Data	on	Disk

Main	Memory

Log	on	Disk

LogT	 A=1

B=5

A=0

T:	R(A),	W(A)	 A:	0à1
This	time,	let’s	try	
committing	after we’ve	
written	log	to	disk	but	
before we’ve	written	
data	to	disk…	this	is	WAL!

If	we	crash	now,	is	T	
durable?

OK,	Commit!

57

Write-ahead	Logging	(WAL)	Commit	Protocol

Data	on	Disk

Main	Memory

Log	on	Disk

T	

A=0

T:	R(A),	W(A)	

A:	0à1

This	time,	let’s	try	
committing	after we’ve	
written	log	to	disk	but	
before we’ve	written	
data	to	disk…	this	is	WAL!

If	we	crash	now,	is	T	
durable?

OK,	Commit!

USE	THE	LOG!
A=1

58

Write-Ahead	Logging	(WAL)

• DB	uses	Write-Ahead	Logging	(WAL) Protocol:

1. Must	force	log	record	for	an	update	before	the	
corresponding	data	page	goes	to	storage

2. Must	write	all	log	records	for	a	TX	before	commit

Each	update	is	
logged!	Why	not	
reads?

à Atomicity

à Durability

59

Logging	Summary

• If	DB	says	TX	commits,	TX	effect	remains after	database	crash

• DB	can	undo	actions and	help	us	with	atomicity

• This	is	only	half	the	story…

60

Concurrency & Locking

1) Concurrency,	scheduling	&	anomalies
2) Locking:	2PL,	conflict	serializability,	

deadlock	detection

61

1.	Concurrency,	Scheduling	&	Anomalies

62

What	we	will	learn	next

• Interleaving	&	scheduling

• Conflict	&	anomaly	types

• ACTIVITY:	TXN	viewer

63

Concurrency:	Isolation	&	Consistency

• The	DBMS	must	handle	concurrency	s.t. …

- Isolation is	maintained:	Users	must	be	able	to	
execute	each	TXN as	if	they	were	the	only	user
• DBMS	handles	the	details	of	interleaving	various	TXNs

- Consistency is	maintained:	TXNs must	leave	the	
DB	in	a	consistent	state
• DBMS	handles	the	details	of	enforcing	integrity	
constraints

ACID

ACID

The	hard	part	is	the	effect	of	
interleaving transactions	and	crashes.

64

Example- consider	two	TXNs:

T1: START TRANSACTION
UPDATE Accounts
SET Amt = Amt + 100
WHERE Name = ‘A’

UPDATE Accounts
SET Amt = Amt - 100
WHERE Name = ‘B’

COMMIT

T2: START TRANSACTION
UPDATE Accounts
SET Amt = Amt * 1.06

COMMIT

T1	transfers	$100	from	B’s	account	
to	A’s	account

T2	credits	both	accounts	with	a	6%	
interest	payment

65

Example- consider	two	TXNs:

T1	transfers	$100	from	B’s	
account	to	A’s	account

T2	credits	both	accounts	with	a	
6%	interest	payment

T1

T2

A	+=	100 B -=	100

A	*=	1.06 B *=	1.06

Time

We	can	look	at	the	TXNs	in	a	timeline	view- serial	execution:

66

Example- consider	two	TXNs:

T1	transfers	$100	from	B’s	
account	to	A’s	account

T2	credits	both	accounts	with	a	
6%	interest	payment

T1

T2

A	+=	100 B -=	100

A	*=	1.06 B *=	1.06

Time

The	TXNs	could	occur	in	either	order…	DBMS	allows!

67

Example- consider	two	TXNs:

T1

T2

A	+=	100 B -=	100

A	*=	1.06 B *=	1.06

Time

The	DBMS	can	also	interleave the	TXNs

T1 transfers	$100	to	A’s	accout,	
then	T2 credits	A’s	account	with	
6%	interest	payment

T2	credits	B’s	account	with	a	6%	
interest	payment,	then	T1	
transfers	$100	from	B’s	
account…

68

Example- consider	two	TXNs:

What	goes	wrong	here??

T1

T2

B -=	100

B *=	1.06

Time

The	DBMS	can	also	interleave the	TXNs

A	+=	100

A	*=	1.06

69

Recall:	Three	Types	of	Regions	of	Memory

1. Local:		In	our	model	each	process	in	a	DBMS	has	its	
own	local	memory,	where	it	stores	values	that	only	
it	“sees”

2. Global:		Each	process	can	read	from	/	write	to	
shared	data	in	main	memory

3. Disk:		Global	memory	can	read	from	/	flush	to	disk

4. Log:	Assume	on	stable	disk	storage- spans	both	
main	memory	and	disk…

Local Global
Main

Memory	
(RAM)

Disk

“Flushing to	disk”	=	
writing	to	disk	from	
main	memory

1 2

3

Log	is	a	sequence from	
main	memory	->	disk

4

70

Why	Interleave	TXNs?

• Interleaving	TXNs	might	lead	to	anomalous	outcomes…	why	do	it?

• Several	important	reasons:
- Individual	TXNs	might	be	slow- don’t	want	to	block	other	users	during!

- Disk	access	may	be	slow- let	some	TXNs	use	CPUs	while	others	accessing	
disk!

All	concern	large	differences	in	performance

71

Interleaving	&	Isolation

• The	DBMS	has	freedom	to	interleave	TXNs

• However,	it	must	pick	an	interleaving	or	
schedule	such	that	isolation	and	consistency	
are	maintained

- Must	be	as	if	the	TXNs	had	executed	serially!

DBMS	must	pick	a	schedule	which	maintains	isolation	
&	consistency

“With	great	power	
comes	great	
responsibility”

ACID

72

Scheduling	examples

T1

T2

A	+=	100 B -=	100

A	*=	1.06 B *=	1.06

T1

T2

A	+=	100 B -=	100

B *=	1.06

A B

$50 $200

A B

$159 $106

A B

$159 $106

Starting	
Balance

Same	
result!

Serial	schedule	T1,T2:

Interleaved	schedule	1:

A	*=	1.06

73

Scheduling	examples

T1

T2

A	+=	100 B -=	100

A	*=	1.06 B *=	1.06

T1

T2

A	+=	100 B -=	100

A	*=	1.06 B *=	1.06

A B

$50 $200

A B

$159 $106

A B

$159 $112

Starting	
Balance

Different	
result	than	
serial	T1,T2

Serial	schedule	T1,T2:

Interleaved	schedule	2:

74

Scheduling	examples

T1

T2

A	+=	100 B -=	100

A	*=	1.06 B *=	1.06

T1

T2

A	+=	100 B -=	100

A	*=	1.06 B *=	1.06

A B

$50 $200

A B

$153 $112

A B

$159 $112

Starting	
Balance

Serial	schedule	T2,T1:

Interleaved	schedule	2:
Different	
result	than	
serial	T2,T1
as	well!

75

Scheduling	examples

This	schedule	is	different	than	any	
serial	order! We	say	that	it	is	not	

serializable

T1

T2

A	+=	100 B -=	100

A	*=	1.06 B *=	1.06

Interleaved	schedule	2:

76

Scheduling	Definitions

• A	serial	schedule	is	one	that	does	not	interleave	the	actions	of	different	
transactions

• Schedules	X	and	Y	are	equivalent	schedules	if,	for	any	database	state,	the	
effect	on	DB	of	executing	X	is	identical to	the	effect	of	executing	Y

• A	serializable	schedule	is	a	schedule	that	is	equivalent	to	some	serial	
execution	of	the	transactions.

The	word	“some”	makes	this	
definition	powerful	& tricky!

77

Serializable?

T1

T2

A	+=	100 B -=	100

A	*=	1.06 B *=	1.06

Same	as	a	serial	schedule	
for	all	possible	values	of	
A,	B	=	serializable

Serial	schedules:

A B

T1,T2 1.06*(A+100) 1.06*(B-100)

T2,T1 1.06*A	+	100 1.06*B	- 100

A B

1.06*(A+100) 1.06*(B-100)

78

Serializable?

T1

T2

A	+=	100 B -=	100

A	*=	1.06 B *=	1.06

Not	equivalent to	any	
serializable	schedule =	
not	serializable

Serial	schedules:

A B

T1,T2 1.06*(A+100) 1.06*(B-100)

T2,T1 1.06*A	+	100 1.06*B	- 100

A B

1.06*(A+100) 1.06*B	- 100

79

What	else	can	go	wrong	with	interleaving?

• Various	anomalies which	break	isolation	/	serializability

- Often	referred	to	by	name…

• Occur	because	of	/	with	certain	“conflicts”	between	interleaved	TXNs

80

The	DBMS’s	view	of	the	schedule

T1

T2

A	+=	100 B -=	100

A	*=	1.06 B *=	1.06

T1

T2

R(A)

R(A)

W(A)

W(A) R(B) W(B)

R(B) W(B)

Each	action	in	the	TXNs	
reads	a	value	from	global	
memory and	then	writes	
one	back	to	it

Scheduling	order	matters!

81

Conflict	Types

• Thus,	there	are	three	types	of	conflicts:
- Read-Write	conflicts	(RW)
- Write-Read	conflicts	(WR)	
- Write-Write	conflicts	(WW)

Why	no	“RR	Conflict”?

Two	actions	conflict if	they	are	part	of	different	TXNs,	involve	the	same	
variable,	and	at	least	one	of	them	is	a	write

Interleaving	anomalies	occur	with	/	because	of	these	conflicts	between	
TXNs (but	these	conflicts	can	occur	without	causing	anomalies!)

82

Classic	Anomalies	with	Interleaved	Execution

83

Occurring	with	/	because	of	a	RW	conflict

T1

T2

R(A) R(A)

1. T1 reads some	data from	A

2. T2 writes to	A

3. Then,	T1 reads	from	A	again	
and	now	gets	a	different	/	
inconsistent	value

R(A) W(A) C

Example:

“Unrepeatable	read”

84

Occurring	with	/	because	of	a	WR	conflict

T1

T2

W(A) A

1. T1 writes some	data to	A

2. T2 reads from	A,	then	writes	
back	to	A	&	commits

3. T1 then	aborts- now	T2’s	
result	is	based	on	an	
obsolete	/	inconsistent	value

R(A) W(A) C

Example:

“Dirty	read”	(Reading	uncommitted	data)

85

T1

T2

W(A)

1. T1 writes some	data to	A

2. T2 reads from	A	and	B,	and	
then	writes	some	value	
which	depends	on	A	&	B

3. T1 then	writes	to	B- now	
T2’s	result	is	based	on	an	
incomplete	commit

Example:

W(B) C

R(A) CR(B) W(C=A*B)

Again,	occurring	because	of	a	WR	conflict

“Inconsistent	read”	(Reading	partial	commits)

86

T1

T2

W(A)

1. T1 blind	writes some	data to	A

2. T2 blind	writes to	A	and	B

3. T1 then	blind	writes to	B;	now	
we	have	T2’s	value	for	B	and	T1’s	
value	for	A- not	equivalent	to	
any	serial	schedule!

Example:

W(B) C

W(A) CW(B)

Occurring	because	of	a	WW	conflict

Partially-lost	update

87

Activity-31.ipynb

88

2.	Conflict	Serializability,	Locking	&	Deadlock

89

What	we	will	learn	next

• RECAP:	Concurrency

• Conflict	Serializability

• DAGs &	Topological	Orderings

• Strict	2PL

• Deadlocks

90

Recall:	Concurrency	as	Interleaving	TXNs

We	call	the	particular	
order	of	interleaving	a	
schedule

T1
T2

R(A) R(B)W(A) W(B)

Serial	Schedule:

R(A) R(B)W(A) W(B)

T1
T2

R(A) R(B)W(A) W(B)

Interleaved	Schedule:

R(A) R(B)W(A) W(B)

• For	our	purposes,	having	
TXNs occur	concurrently	
means	interleaving	their	
component	actions	(R/W)

91

Recall:	“Good”	vs.	“bad”	schedules

We	want	to	develop	ways	of	discerning	“good”	vs.	“bad”	schedules

Serial	Schedule:

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

X

Interleaved	Schedules:

Why?

92

Ways	of	Defining	“Good”	vs.	“Bad”	Schedules

• Recall:	we	call	a	schedule	serializable	if	it	is	equivalent	to	some	
serial	schedule
- We	used	this	as	a	notion	of	a	“good”	interleaved	schedule,	since	a	
serializable	schedule	will	maintain	isolation	&	consistency

• Now,	we’ll	define	a	stricter,	but	very	useful	variant:
- Conflict	serializability

We’ll	need	to	define	
conflicts first..

93

Conflicts

Two	actions	conflict if	they	are	part	of	different	TXNs,	involve	the	same	
variable,	and	at	least	one	of	them	is	a	write

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)W-R	Conflict

W-W	Conflict

94

Conflicts

Two	actions	conflict if	they	are	part	of	different	TXNs,	involve	the	same	
variable,	and	at	least	one	of	them	is	a	write

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

All	“conflicts”!

95

Conflict	Serializability

• Two	schedules	are	conflict	equivalent if:

- They	involve	the	same	actions	of	the	same	TXNs

- Every	pair	of	conflicting	actions	of	two	TXNs are	ordered	in	the	same	way

• Schedule	S	is	conflict	serializable if	S	is	conflict	equivalent	to	some	
serial	schedule

Conflict	serializable	⇒ serializable
So	if	we	have	conflict	serializable,	we	have	consistency	&	isolation!	

96

Recall:	“Good”	vs.	“bad”	schedules

96

Conflict	serializability also	provides	us	with	an	operative	
notion	of	“good”	vs.	“bad”	schedules!

Serial	Schedule:

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

X

Interleaved	Schedules:

Note	that	in	the	“bad”	schedule,	the	
order	of	conflicting	actions	is	different	
than	the	above	(or	any)	serial	
schedule!

97

Note:	Conflicts	vs.	Anomalies

• Conflicts are	things	we	talk	about	to	help	us	characterize	different	
schedules
- Present	in	both	“good”	and	“bad”	schedules

• Anomalies are	instances	where	isolation	and/or	consistency	is	
broken	because	of	a	“bad”	schedule
- We	often	characterize	different	anomaly	types	by	what	types	of	conflicts	
predicated	them

98

The	Conflict	Graph

• Let’s	now	consider	looking	at	conflicts	at	the	TXN level

• Consider	a	graph	where	the	nodes	are	TXNs,	and	there	is	an	edge	
from	Ti àTj if	any	actions	in	Ti precede	and	conflict	with any	actions	
in	Tj

T1 T2

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

99

What	can	we	say	about	“good”	vs.	“bad”	conflict	graphs?

Serial	Schedule:

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

T1

T2

R(A) R(B)W(A) W(B)

R(A) R(B)W(A) W(B)

X

Interleaved	Schedules:

A	bit	complicated…

100

What	can	we	say	about	“good”	vs.	“bad”	conflict	graphs?

Serial	Schedule:

X

Interleaved	Schedules:

T1 T2 T1 T2

T1 T2

Theorem:	Schedule	is	conflict	serializable if	and	
only	if	its	conflict	graph	is	acyclic

Simple!

101

DAGs	&	Topological	Orderings

• A	topological	ordering of	a	directed	graph	is	a	linear	ordering	of	its	
vertices	that	respects	all	the	directed	edges

• A	directed	acyclic	graph	(DAG) always	has	one	or	more	topological	
orderings
- (And	there	exists	a	topological	ordering	if	and	only	if	there	are	no	directed	
cycles)

102

DAGs	&	Topological	Orderings

• Ex:	What	is	one	possible	topological	ordering	here?

1

32

0

Ex:	0,	1,	2,	3		(or:	0,	1,	3,	2)

103

DAGs	&	Topological	Orderings

• Ex:	What	is	one	possible	topological	ordering	here?

1

32

0

There	is	none!

104

Connection	to	conflict	serializability

• In	the	conflict	graph,	a	topological	ordering	of	nodes	corresponds	to	
a	serial	ordering	of	TXNs

• Thus	an	acyclic	conflict	graphà conflict	serializable!

Theorem:	Schedule	is	conflict	serializable if	and	
only	if	its	conflict	graph	is	acyclic

105

Strict	Two-Phase	Locking

• We	consider	locking -- specifically,	strict	two-phase	locking	-- as	a	
way	to	deal	with	concurrency,	because	it	guarantees	conflict	
serializability (if	it	completes- see	upcoming…)

• Also	(conceptually)	straightforward	to	implement,	and	transparent	
to	the	user!

106

Strict	Two-Phase	Locking	(Strict	2PL)	Protocol:

• TXNs obtain:

• An	X	(exclusive)	lock on	object	before	writing

- If	a	TXN holds,	no	other	TXN can	get	a	lock	(S	or	X)	on	that	object.

• An	S	(shared)	lock on	object	before	reading

- If	a	TXN holds,	no	other	TXN can	get	an	X	lock	on	that	object

• All	locks	held	by	a	TXN are	released	when	TXN completes.	

Note:	Terminology	
here- “exclusive”,	
“shared”- meant	to	
be	intuitive- no	tricks!

107

Picture	of	2-Phase	Locking	(2PL)

Time
Strict	2PL

0	locks

#	Locks	
the	TXN
has

Lock	
Acquisition

Lock	Release
On	TXN	commit!

108

Strict	2PL

Therefore,	Strict	2PL	only	allows	conflict	
serializable	⇒ serializable	schedules

Proof	Intuition:	In	strict	2PL,	if	there	is	an	edge	Ti à Tj (i.e.	Ti and	Tj
conflict)	then	Tj needs	to	wait	until	Ti is	finished	– so	cannot	have	an	edge	
Tj à Ti

Theorem: Strict	2PL	allows	only	schedules	whose	
dependency	graph	is	acyclic

109

Strict	2PL

• If	a	schedule	follows	strict	2PL and	locking,	it	is	conflict	serializable…
- …and	thus	serializable
- …and	thus	maintains	isolation	&	consistency!

• Not	all	serializable	schedules	are	allowed	by	strict	2PL.	

• So	let’s	use	strict	2PL,	what	could	go	wrong?

110

Deadlock	Detection:	Example

First,	T1 requests	a	shared	lock	
on	A	to	read	from	it

T1
T2

S(A) R(A)

Waits-for	graph:

T1 T2

111

Deadlock	Detection:	Example

Next,	T2 requests	a	shared	lock	
on	B	to	read	from	it

T1
T2 S(B) R(B)

S(A) R(A)

Waits-for	graph:

T1 T2

112

Deadlock	Detection:	Example

T2 then	requests	an	exclusive	
lock	on	A	to	write	to	it- now	T2
is	waiting	on	T1…

T1
T2 X(A)S(B) R(B)

S(A) R(A)

Waits-for	graph:

T1 T2

W(A)Waiting…

113

Deadlock	Detection:	Example

Finally,	T1 requests	an	exclusive	
lock	on	B	to	write	to	it- now	T1
is	waiting	on	T2…	DEADLOCK!

T1
T2

X(B)

X(A)S(B) R(B)

S(A) R(A)

Waits-for	graph:

T1 T2

W(A)

W(B)

Cycle	=	
DEADLOCK

Waiting…

Waiting…

114

ERROR: deadlock detected
DETAIL: Process 321 waits for ExclusiveLock on tuple of relation 20 of database
12002; blocked by process 4924.
Process 404 waits for ShareLock on transaction 689; blocked by process 552.
HINT: See server log for query details.

The	problem?	Deadlock!??!

T1 T2

115

Deadlocks

• Deadlock:	Cycle	of	transactions	waiting for	locks	to	be	released	by	
each	other.

• Two	ways	of	dealing	with	deadlocks:

- Deadlock	prevention

- Deadlock	detection

116

Deadlock	Detection

• Create	the	waits-for	graph:

- Nodes	are	transactions

- There	is	an	edge	from	Ti à Tj if	Ti is	waiting	for	Tj to	release	a	lock

• Periodically	check	for	(and	break)	cycles in	the	waits-for	graph

117

Summary

• Concurrency	achieved	by	interleaving	TXNs such	that	isolation	&	
consistency are	maintained
- We	formalized	a	notion	of	serializability that	captured	such	a	“good”	
interleaving	schedule

• We	defined	conflict	serializability,	which	implies	serializability

• Locking allows	only	conflict	serializable	schedules
- If	the	schedule	completes…	(it	may	deadlock!)

