
1

L15-L16:	Transactions	&	Concurrency	Control

CS3200 Database	design	(sp18 s2)
3/12/2018

2

L15:	Transactions	&	Concurrency	Control
Part	1:	Transactions	&	Logging

CS3200 Database	design	(sp18 s2)
3/12/2018

3

Goals	this	part	of	lectures

• Transactions are	a	programming	abstraction	that	enables	the	DBMS	to	handle	
recovery and	concurrency for	users.

• Application:	Transactions	are	critical	for	users
- Even	casual	users	of	data	processing	systems!

• Fundamentals:	The	basics	of	how	TXNs work
- Transaction	processing	is	part	of	the	debate	around	new	data	processing	systems

- Give	you	enough	information	to	understand	how	TXNs work,	and	the	main	concerns	
with	using	them

4

balance? $500
balance? $500

withdraw $300
withdraw $300

5

Some	example	of	what	can	go	wrong

6

Dirty	Reads

T1: WRITE(A)

T1: ABORT

T2: READ(A)

Write-Read	Conflict

T2 reads	a	data	object	
previously	written	but	
uncommitted by	T1

7

Inconsistent	Read

T1: A := 20; B := 20;
T1: WRITE(A)

T1: WRITE(B)

T2: READ(A);
T2: READ(B);

Write-Read	Conflict

T2 reads	a	data	object	
previously	written	but	
not	finished	by	T1

8

Unrepeatable	Read

T1: WRITE(A)
T2: READ(A);

T2: READ(A);

Read-Write	Conflict

9

Lost	Update

T1: READ(A)

T1: A := A+5

T1: WRITE(A)

T2: READ(A);

T2: A := A*1.3

T2: WRITE(A);

Write-Write	Conflict

T2 overwrites	
uncommitted	data	by	T1

10

Intro to
Transactions & Logging

1) Transactions
2) Properties	of	Transactions:	ACID
3) Logging

11

1.	Transactions

12

What	we	will	learn	about	next

• Our	“model”	of	the	DBMS	/	computer

• Transactions	basics

• Motivation:	Recovery	&	Durability

• Motivation:	Concurrency

13

High-level:	Disk	vs.	Main	Memory

• Disk:

- Slow
• Sequential	access
- (although	fast	sequential	reads)

- Durable
• We	will	assume	that	once	on	disk,	data	is	safe!

- Cheap
Platters

Spindle
Disk head

Arm movement

Arm assembly

Tracks

Sector

Cylinder

14

High-level:	Disk	vs.	Main	Memory

• Random	Access	Memory	(RAM)	or	Main	Memory:

- Fast
• Random	access,	byte	addressable
- ~10x faster	for	sequential	access
- ~100,000x faster	for	random	access!

- Volatile
• Data	can	be	lost	if	e.g.	crash	occurs,	power	goes	out,	etc!

- Expensive
• For	$100,	get	16GB of	RAM	vs.	2TB of	disk!

15

Our	model:	Three	Types	of	Regions	of	Memory

1. Local:		In	our	model	each	process	in	a	DBMS	has	its	
own	local	memory,	where	it	stores	values	that	only	
it	“sees”

2. Global:		Each	process	can	read	from	/	write	to	
shared	data	in	main	memory

3. Disk:		Global	memory	can	read	from	/	flush	to	disk

4. Log:	Assume	on	stable	disk	storage- spans	both	
main	memory	and	disk…

Local Global
Main

Memory	
(RAM)

Disk

“Flushing to	disk”	=	
writing	to	disk	from	
main	memory

1 2

3

Log	is	a	sequence from	
main	memory	->	disk

4

16

High-level:	Disk	vs.	Main	Memory

• Keep	in	mind	the	tradeoffs	here	as	motivation	for	the	mechanisms	we	
introduce

- Main	memory:	fast	but	limited	capacity,	volatile

- Vs.	Disk:	slow	but	large	capacity,	durable

How	do	we	effectively	utilize	both ensuring	certain	critical	guarantees?

17

Transactions

18

Transactions:	Basic	Definition

START TRANSACTION
UPDATE Product
SET Price = Price – 1.99
WHERE pname = ‘Gizmo’

COMMIT

In	the	real	world,	a	TXN	
either	happened	
completely	or	not	at	all

A	transaction	(“TXN”)	is	a	sequence	of	one	or	
more	operations (reads	or	writes)	which	reflects	
a	single	real-world	transition.

19

Transactions:	Basic	Definition

A	transaction	(“TXN”)	is	a	sequence	of	one	or	
more	operations (reads	or	writes)	which	reflects	
a	single	real-world	transition.

In	the	real	world,	a	TXN	
either	happened	
completely	or	not	at	all

Examples:

• Transfer	money	between	accounts

• Purchase	a	group	of	products

• Register	for	a	class	(either	waitlist	or	
allocated)

20

Transactions	in	SQL

• In	“ad-hoc”	SQL:
- Default:	each	statement	=	one	transaction

• In	a	program,	multiple	statements	can	be	grouped	together	as	a	transaction:

START TRANSACTION
UPDATE Bank SET amount = amount – 100
WHERE name = ‘Bob’
UPDATE Bank SET amount = amount + 100
WHERE name = ‘Joe’

COMMIT

21

Model	of	Transaction	in	our	class

• Note:	we	assume	that	the	DBMS	only	sees	reads	and	writes	to	data

- User	may	do	much	more

- In	real	systems,	databases	do	have	more	info...

22

Motivation	for	Transactions

Grouping	user	actions	(reads	&	writes)	into	
transactions	helps	with	two	goals:

1. Recovery	&	Durability:		Keeping	the	DBMS	
data	consistent		and	durable	in	the	face	of	
crashes,	aborts,	system	shutdowns,	etc.

2. Concurrency:		Achieving	better	performance	
by	parallelizing	TXNs without	creating	
anomalies

Our	first	focus

23

Motivation

1.	Recovery	&	Durability of	user	data	is	essential	for	reliable	DBMS	
usage

- The	DBMS	may	experience	crashes	(e.g.	power	outages,	etc.)

- Individual	TXNs may	be	aborted	(e.g.	by	the	user)

Idea:	Make	sure	that	TXNs	are	either	durably	stored	in	full,	or
not	at	all;	keep	log	to	be	able	to	“roll-back”	TXNs

24

Client 1:
INSERT INTO SmallProduct(name, price)

SELECT pname, price
FROM Product
WHERE price <= 0.99

DELETE Product
WHERE price <=0.99

Protection	against	crashes	/	aborts

What	goes	wrong?

Crash	/	abort!

25

Protection	against	crashes	/	aborts

Client 1:
START TRANSACTION

INSERT INTO SmallProduct(name, price)
SELECT pname, price
FROM Product
WHERE price <= 0.99

DELETE Product
WHERE price <=0.99

COMMIT OR ROLLBACK

Now	we’d	be	fine!		We’ll	see	how	/	why	this	lecture

26

Motivation

• 2.	Concurrent execution	of	user	programs	is	essential	for	good	
DBMS	performance.

- Disk	accesses	may	be	frequent	and	slow- optimize	for	throughput	(#	of	
TXNs),	trade	for	latency	(time	for	any	one	TXN)

- Users	should	still	be	able	to	execute	TXNs as	if	in	isolation	and	such	that	
consistency	is	maintained

Idea:	Have	the	DBMS	handle	running	several	user	TXNs	
concurrently,	in	order	to	keep	CPUs	humming…

27

Multiple	users:	single	statements

Two	managers	attempt	to	discount	products	concurrently-
What	could	go	wrong?

Client 1: UPDATE Product
SET Price = Price – 1.99
WHERE pname = ‘Gizmo’

Client 2: UPDATE Product
SET Price = Price*0.5
WHERE pname = ‘Gizmo’

28

Multiple	users:	single	statements

28

Client 1: START TRANSACTION
UPDATE Product
SET Price = Price – 1.99
WHERE pname = ‘Gizmo’

COMMIT

Client 2: START TRANSACTION
UPDATE Product
SET Price = Price*0.5
WHERE pname = ‘Gizmo’

COMMIT

Now	works	like	a	charm- we’ll	see	how	/	why	next	lecture…

29

2.	Properties	of	Transactions

ACID

30

What	we	learn	about	next:	ACID

• Atomicity

• Consistency

• Isolation

• Durability

31

Transaction	Properties:	ACID

• Atomic
- State	shows	either	all	the	effects	of	txn,	or	none	of	them

• Consistent
- Txn	moves	from	a	state	where	integrity	holds,	to	another	where	integrity	holds

• Isolated
- Effect	of	txns	is	the	same	as	txns	running	one	after	another	(ie	looks	like	batch	mode)

• Durable
- Once	a	txn	has	committed,	its	effects	remain	in	the	database

ACID	continues	to	be	a	source	of	great	debate!	
BASE	(Basic	Availability,	Soft-state,	Eventual	Consistency)

a-tomos:	undividable

32

ACID:	Atomicity

• TXN’s activities	are	atomic:	all	or	nothing
- Intuitively:	in	the	real	world,	a	transaction	is	something	that	would	either	
occur	completely	or	not	at	all

• Two	possible	outcomes	for	a	TXN

- It	commits:	all	the	changes	are	made

- It	aborts:	no	changes	are	made

33

ACID:	Consistency

• The	tables	must	always	satisfy	user-specified	integrity	constraints
- Examples:

• Account	number	is	unique
• Stock	amount	can’t	be	negative
• Sum	of	debits	and	of	credits	is	0

• How	consistency	is	achieved:
- Programmer	makes	sure	a	txn takes	a	consistent	state	to	a	consistent	state
- System	makes	sure	that	the	txn is	atomic

34

ACID:	Isolation

• A	transaction	executes	concurrently	with	other	transactions

• Isolation:	the	effect	is	as	if	each	transaction	executes	in	isolation	of	the	
others.

- E.g.	Should	not	be	able	to	observe	changes	from	other	transactions	during	the	run

35

Isolation	failure

T1: A := A-1

T1: B := B+1

T2: B := B-2

T2: A := A+2

Write-Write	Conflict

Crash	/	abort!

36

ACID:	Durability

• The	effect	of	a	TXN must	continue	to	exist	(“persist”)	after	the	TXN
- And	after	the	whole	program	has	terminated
- And	even	if	there	are	power	failures,	crashes,	etc.
- And	etc…

• Means:	Write	data	to	disk

Change	on	the	horizon?	
Non-Volatile	Ram	(NVRam).	
Byte	addressable.

