L14: Normalization

CS3200 Database design (sp18 s2)

https://course.ccs.neu.edu/cs3200sp18s2/ 3/1/2018

Announcements!

- Keep bringing your name plates 🙂
- Outline today
 - More Normalization
 - Project 1 discussion & Transactions after Spring Break

Closures, Superkeys, and (Candidate) Keys

What we will see next

- Closures Part 2
- Superkeys & Keys
- Practice: The key or a key?

Why Do We Need the Closure?

- With closure we can find all FD's easily
- To check if $X \rightarrow A$
 - Compute X⁺

- Check if $A \in X^+$

Note here that **X** is a *set* of attributes, but **A** is a *single* attribute. Why does considering FDs of this form suffice?

Recall the <u>Split/combine</u> rule: $X \rightarrow A_1, ..., X \rightarrow A_n$ *implies* $X \rightarrow \{A_1, ..., A_n\}$

Step 1: Compute X⁺, for every set of attributes X:

```
{A}^{+} = {A}
\{B\}^+ = \{B, D\}
\{C\}^+ = \{C\}
\{D\}^+ = \{D\}
{A,B}^+ = {A,B,C,D}
\{A,C\}^+ = \{A,C\}
{A,D}^+ = {A,B,C,D}
{A,B,C}^+ = {A,B,D}^+ = {A,C,D}^+ = {A,B,C,D}
\{B,C,D\}^+ = \{B,C,D\}
{A,B,C,D}^+ = {A,B,C,D}
```

 $\begin{array}{c} \{A,B\} \rightarrow C\\ \{A,D\} \rightarrow B\\ \{B\} \rightarrow D \end{array}$

Example:

Given F =

No need to compute all of these- why?

Step 1: Compute X⁺, for every set of attributes X:

$${A}^{+} = {A}, {B}^{+} = {B,D}, {C}^{+} = {C}, {D}^{+} = {D}, {A,B}^{+} = {A,B,C,D}, {A,C}^{+} = {A,C}, {A,D}^{+} = {A,B,C,D}, {A,B,C}^{+} = {A,B,D}^{+} = {A,C,D}^{+} = {A,B,C,D}, {B,C,D}^{+} = {B,C,D}, {A,B,C,D}^{+} = {A,B,C,D}$$

Example:
Given F = $\{A, B\} \rightarrow C$
 $\{A, D\} \rightarrow B$
 $\{B\} \rightarrow D$

Step 2: Enumerate all FDs X \rightarrow Y, s.t. Y \subseteq X⁺ and X \cap Y = \emptyset :

$$\{A,B\} \rightarrow \{C,D\}, \{A,D\} \rightarrow \{B,C\}, \\ \{A,B,C\} \rightarrow \{D\}, \{A,B,D\} \rightarrow \{C\}, \\ \{A,C,D\} \rightarrow \{B\}$$

Step 1: Compute X⁺, for every set of attributes X:

$${A}^{+} = {A}, {B}^{+} = {B,D}, {C}^{+} = {C}, {D}^{+} = {D}, {A,B}^{+} = {A,B,C,D}, {A,C}^{+} = {A,C}, {A,D}^{+} = {A,B,C,D}, {A,B,C}^{+} = {A,B,D}^{+} = {A,C,D}^{+} = {A,B,C,D}, {B,C,D}^{+} = {B,C,D}, {A,B,C,D}^{+} = {A,B,C,D}$$

Example:
Given F = $\{A,B\} \rightarrow C$
 $\{A,D\} \rightarrow B$
 $\{B\} \rightarrow D$

Step 2: Enumerate all FDs X \rightarrow Y, s.t. $Y \subseteq X^+$ and $X \cap Y = \emptyset$:

$$\{A,B\} \rightarrow \{C,D\}, \{A,D\} \rightarrow \{B,C\}, \\ \{A,B,C\} \rightarrow \{D\}, \{A,B,D\} \rightarrow \{C\}, \\ \{A,C,D\} \rightarrow \{B\}$$

"Y is in the closure of X"

Step 1: Compute X⁺, for every set of attributes X:

$${A}^{+} = {A}, {B}^{+} = {B,D}, {C}^{+} = {C}, {D}^{+} = {D}, {A,B}^{+} = {A,B,C,D}, {A,C}^{+} = {A,C}, {A,D}^{+} = {A,B,C,D}, {A,B,C}^{+} = {A,B,D}^{+} = {A,C,D}^{+} = {A,B,C,D}, {B,C,D}^{+} = {B,C,D}, {A,B,C,D}^{+} = {A,B,C,D}$$

Example: {A,B} \rightarrow C Given F = \rightarrow B $\{A,D\}$ **{B}**

Step 2: Enumerate all FDs X \rightarrow Y, s.t. Y \subseteq X⁺

and
$$X \cap Y = \emptyset$$
:

$$\{A,B\} \rightarrow \{C,D\}, \{A,D\} \rightarrow \{B,C\}, \\ \{A,B,C\} \rightarrow \{D\}, \{A,B,D\} \rightarrow \{C\}, \\ \{A,C,D\} \rightarrow \{B\}$$

The FD X \rightarrow Y is non-trivial

Keys and Superkeys

A <u>superkey</u> is a set of attributes $A_1, ..., A_n$ s.t. for *any other* attribute **B** in R, we have $\{A_1, ..., A_n\} \rightarrow B$

I.e. all attributes are *functionally determined* by a superkey

A <u>key</u> is a *minimal* superkey (also called "candidate key") This means that no subset of a key is also a superkey (i.e., dropping any attribute from the key makes it no longer a superkey)

Finding Keys and Superkeys

- For each set of attributes X
 - Compute X⁺
 - If X^+ = set of all attributes then X is a superkey
 - If X is minimal, then it is a key

Example of Finding Keys

Product(name, price, category, color)

{name, category} \rightarrow price $\{category\} \rightarrow color$

What is a key?

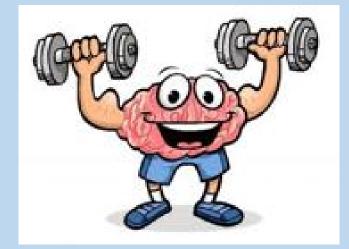
Example of Finding Keys

Product(name, price, category, color)

{name, category} → price
{category} → color

{name, category}* = {name, price, category, color}

- = the set of all attributes
- \Rightarrow this is a **superkey**


 \Rightarrow this is a **key**, since neither **name** nor **category** alone is a superkey

Practice

• Activity-21.ipynb

Complete Normalization Practice!

Parking Tickets: Original List

TABLE 4-0 Tarking fickets at Millennium college											
Parking 1	icket Table										
St ID	L Name	F Name	Phone No	St Lic	Lic No	Ticket #	Date	Code	Fine		
38249	Brown	Thomas	111-7804	FL	BRY 123	15634	10/17/10	2	\$25		
						16017	11/13/10	1	\$15		
82453	Green	Sally	391-1689	AL	TRE 141	14987	10/05/10	3	\$100		
						16293	11/18/10	1	\$15		
						17892	12/13/10	2	\$25		

Parking Tickets: Original List

TABLE 4-6 Parking Tickets at Millennium College

Parking Ticket Table												
St ID	L Name	F Name	Phone No	St Lic	Lic No	Ticket #	Date	Code	Fine			
38249	Brown	Thomas	111-7804	FL	BRY 123	15634	10/17/10	2	\$25			
						16017	11/13/10	1	\$15			
82453	Green	Sally	391-1689	AL	TRE 141	14987	10/05/10	3	\$100			
						16293	11/18/10	1	\$15			
						17892	12/13/10	2	\$25			

ST ID	L Name	F Name	Phone No	St Lic	Lic No	Ticket #	Date	Code	Fine
38249	Brown	Thomas	111-7804	FL	BRY 123	15634	10/17/10	2	\$25
38249	Brown	Thomas	111-7804	FL	BRY 123	16017	11/13/10	1	\$15
82453	Green	Sally	391-1689	AL	TRE 141	14987	10/05/10	3	\$100
82453	Green	Sally	391-1689	AL	TRE 141	16293	11/18/10	1	\$15
82453	Green	Sally	391-1689	AL	TRE-141	17892	12/13/10	2	\$25

Parking Tickets: Original List

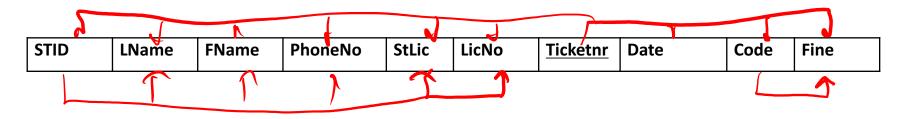
TABLE 4-6 Parking Tickets at Millennium College											
Parking T	icket Table										
St ID	L Name	F Name	Phone No	St Lic	Lic No	Ticket #	Date	Code	Fine		
38249	Brown	Thomas	111-7804	FL	BRY 123	15634	10/17/10	2	\$25		
						16017	11/13/10	1	\$15		
82453	Green	Sally	391-1689	AL	TRE 141	14987	10/05/10	3	\$100		
						16293	11/18/10	1	\$15		
						17892	12/13/10	2	\$25		

	-				-				-
ST ID	L Name	F Name	Phone No	St Lic	Lie No	Ticket #	Date	Code	Fine
38249	Brown	Thomas	111-7804	FL	BRY 123	15634	10/17/10	2	\$25
38249	Brown	Thomas	111-7804	FL	BRY 123	16017	11/13/10	1	\$15
82453	Green	Sally	391-1689	AL	TRE 141	14987	10/05/10	3	\$100
82453	Green	Sally	391-1689	AL	TRE 141	16293	11/18/10	1	\$15
82453	Green	Sally	391-1689	AL	TRE-141	17892	12/13/10	2	\$25

TABLE 4.C. Daulsing Tickets at Millougium Calles

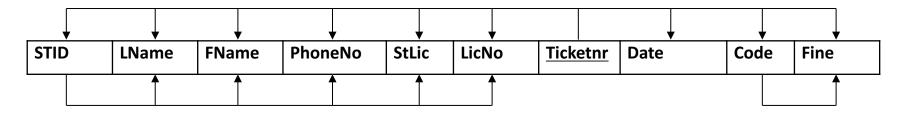
Parking 1	icket Table								
St ID	L Name	F Name	Phone No	St Lic	Lic No	Ticket #	Date	Code	Fine
38249	Brown	Thomas	111-7804	FL	BRY 123	15634	10/17/10	2	\$25
						16017	11/13/10	1	\$15
82453	Green	Sally	391-1689	AL	TRE 141	14987	10/05/10	3	\$100
						16293	11/18/10	1	\$15
						17892	12/13/10	2	\$25

STID	LName	FName	PhoneNo	StLic	LicNo	Ticketnr	Date	Code	Fine
38249	Brown	Thomas	111-7804	FL	BRY 123	15634	10/17/10	2	\$25
38249	Brown	Thomas	111-7804	FL	BRY 123	16017	11/13/10	1	\$15
82453	Green	Sally	391-1689	AL	TRE 141	14987	10/05/10	3	\$100
82453	Green	Sally	391-1689	AL	TRE 141	16293	11/18/10	1	\$15
82453	Green	Sally	391-1689	AL	TRE-141	17892	12/13/10	2	\$25

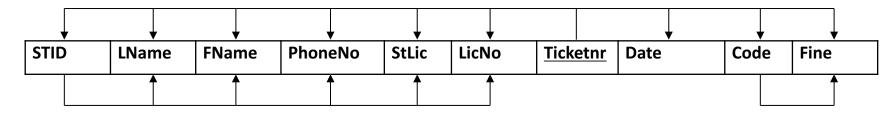

TADLE A.C. Devision Tickets of Millownicum College

Parking 1	icket Table								
St ID	L Name	F Name	Phone No	St Lic	Lic No	Ticket #	Date	Code	Fine
38249	Brown	Thomas	111-7804	FL	BRY 123	15634	10/17/10	2	\$25
						16017	11/13/10	1	\$15
82453	Green	Sally	391-1689	AL	TRE 141	14987	10/05/10	3	\$100
						16293	11/18/10	1	\$15
						17892	12/13/10	2	\$25

STID	LName	FName	PhoneNo	StLic	LicNo	Ticketnr	Date	Code	Fine
38249	Brown	Thomas	111-7804	FL	BRY 123	15634	10/17/10	2	\$25
38249	Brown	Thomas	111-7804	FL	BRY 123	16017	11/13/10	1	\$15
82453	Green	Sally	391-1689	AL	TRE 141	14987	10/05/10	3	\$100
82453	Green	Sally	391-1689	AL	TRE 141	16293	11/18/10	1	\$15
82453	Green	Sally	391-1689	AL	TRE-141	17892	12/13/10	2	\$25

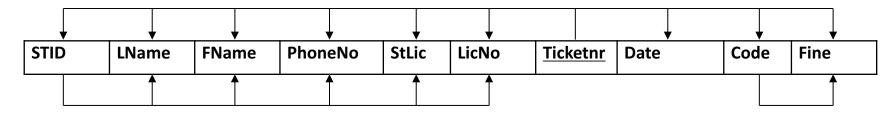

Assume, each student can have maximal one car:

STID	LName	FName	PhoneNo	StLic	LicNo	Ticketnr	Date	Code	Fine
38249	Brown	Thomas	111-7804	FL	BRY 123	15634	10/17/10	2	\$25
38249	Brown	Thomas	111-7804	FL	BRY 123	16017	11/13/10	1	\$15
82453	Green	Sally	391-1689	AL	TRE 141	14987	10/05/10	3	\$100
82453	Green	Sally	391-1689	AL	TRE 141	16293	11/18/10	1	\$15
82453	Green	Sally	391-1689	AL	TRE-141	17892	12/13/10	2	\$25

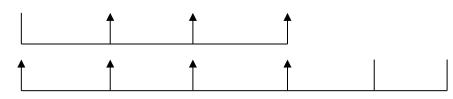

Assume, each student can have maximal one car:

STID	LName	FName	PhoneNo	StLic	LicNo	Ticketnr	Date	Code	Fine
38249	Brown	Thomas	111-7804	FL	BRY 123	15634	10/17/10	2	\$25
38249	Brown	Thomas	111-7804	FL	BRY 123	16017	11/13/10	1	\$15
82453	Green	Sally	391-1689	AL	TRE 141	14987	10/05/10	3	\$100
82453	Green	Sally	391-1689	AL	TRE 141	16293	11/18/10	1	\$15
82453	Green	Sally	391-1689	AL	TRE-141	17892	12/13/10	2	\$25

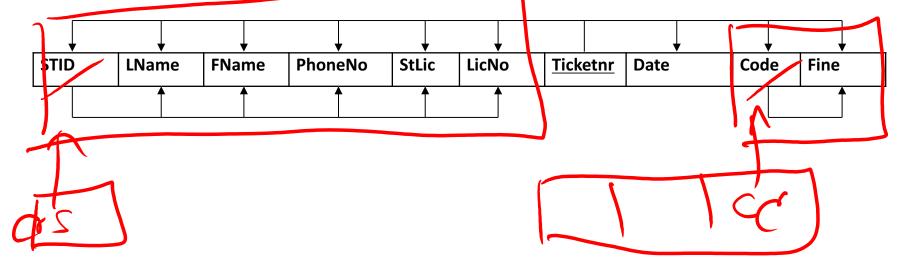
Assume, each student can have maximal one car:



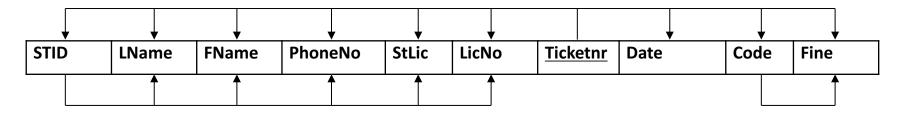
Next assume, students can have more than one car:


STID	LName	FName	PhoneNo	StLic	LicNo	Ticketnr	Date	Code	Fine
38249	Brown	Thomas	111-7804	FL	BRY 123	15634	10/17/10	2	\$25
38249	Brown	Thomas	111-7804	FL	BRY 123	16017	11/13/10	1	\$15
82453	Green	Sally	391-1689	AL	TRE 141	14987	10/05/10	3	\$100
82453	Green	Sally	391-1689	AL	TRE 141	16293	11/18/10	1	\$15
82453	Green	Sally	391-1689	AL	TRE-141	17892	12/13/10	2	\$25

Assume, each student can have maximal one car:

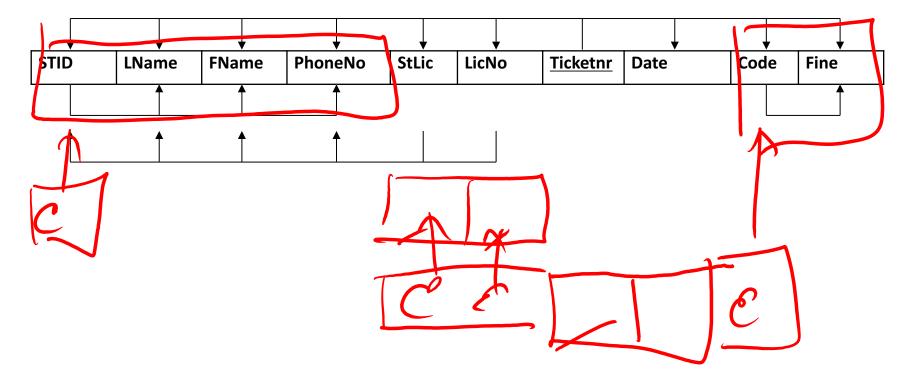

Next assume, students can have more than one car:

STID	LName	FName	PhoneNo	StLic	LicNo	Ticketnr	Date	Code	Fine
38249	Brown	Thomas	111-7804	FL	BRY 123	15634	10/17/10	2	\$25
38249	Brown	Thomas	111-7804	FL	BRY 123	16017	11/13/10	1	\$15
82453	Green	Sally	391-1689	AL	TRE 141	14987	10/05/10	3	\$100
82453	Green	Sally	391-1689	AL	TRE 141	16293	11/18/10	1	\$15
82453	Green	Sally	391-1689	AL	TRE-141	17892	12/13/10	2	\$25

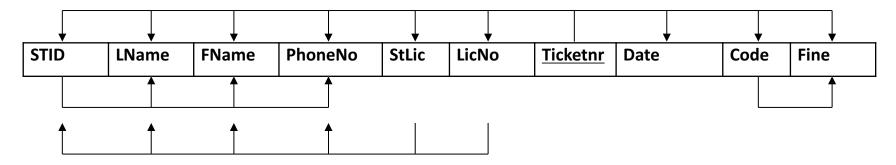


Assume, each student can have maximal one car;

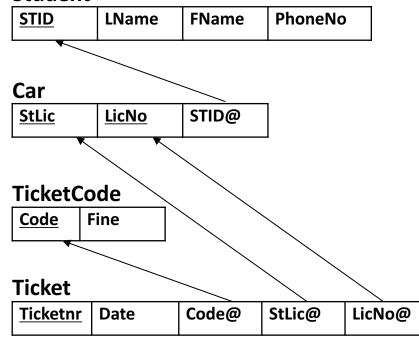
Assume, each student can have maximal one car:



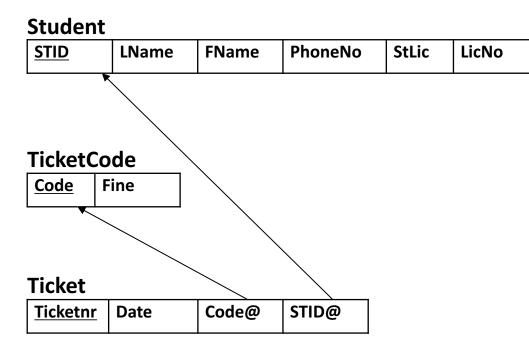
Student



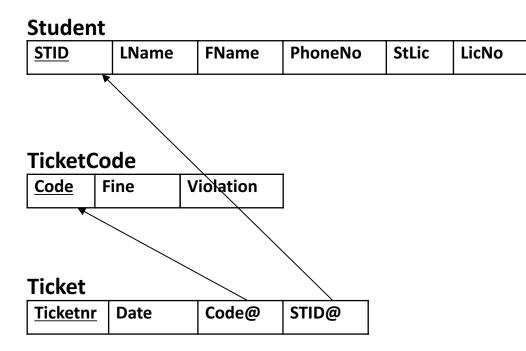
Next assume, students can have more than one car:



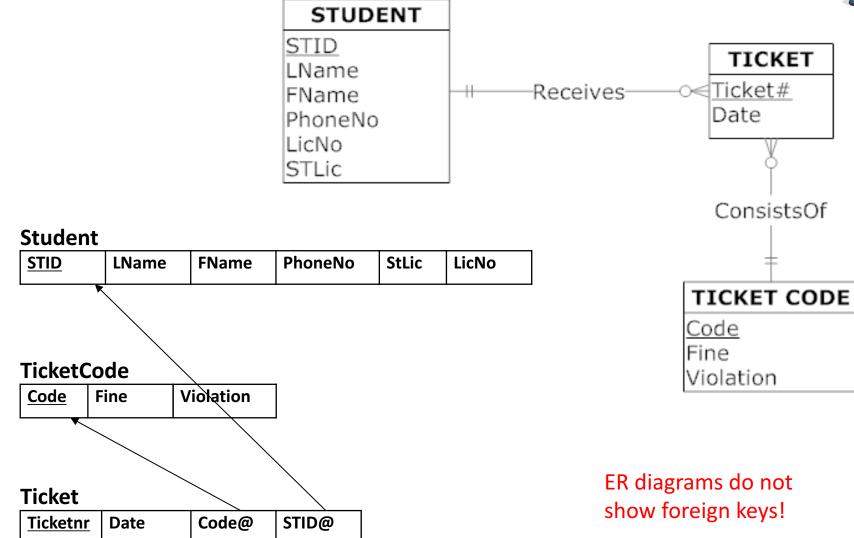
Next assume, students can have more than one car:



Student


Parking Tickets: Adding Violation

Assume, each student can have maximal one car:


Parking Tickets: Adding Violation

Assume, each student can have maximal one car:

Parking Tickets: ER Diagram

Complete Normalization Practice!

StaffPropertyInspection

propertyNo	pAddress	iDate	iTime	comments	staffNo	sName	carReg
PG4	6 Lawrence St, Glasgow	18-Oct-03	10:00	need to replace crockery	SG37	Ann Beech	M231 JGR
		22-Apr-04	09:00	in good order	SG14	David Ford	M533 HDR
		1-Oct-04	12:00	damp rot in bathroom	SG14	David Ford	N721 HFR
PG16	5 Novar Dr, Glasgow	22-Apr-04	13:00	replace living room carpet	SG14	David Ford	M533 HDR
		24-Oct-04	14:00	good condition	SG37	Ann Beech	N721 HFR

Can a database store this information? Is it in 1NF?

- When staff are required to undertake these inspections, they are allocated a company car for use on the day of the inspections. (One car per person & day)
- However, a car may be allocated to several members of staff as required throughout the working day.
- A member of staff may inspect several properties on a given date, but a property is only inspected once on a given date.

StaffPropertyInspection

propertyNo	iDate	iTime	pAddress	comments	staffNo	sName	carReg
PG4	18-Oct-03	10:00	6 Lawrence St, Glasgow	need to replace crockery	SG37	Ann Beech	M231 JGR
PG4	22-Apr-04	09:00	6 Lawrence St, Glasgow	in good order	SG14	David Ford	M533 HDR
PG4	1-Oct-04	12:00	6 Lawrence St, Glasgow	damp rot in bathroom	SG14	David Ford	N721 HFR
PG16	22-Apr-04	13:00	5 Novar Dr, Glasgow	replace living room carpet	SG14	David Ford	M533 HDR
PG16	24-Oct-04	14:00	5 Novar Dr, Glasgow	good condition	SG37	Ann Beech	N721 HFR

No! Only now a database can store the information: 1NF But we still need a primary key

- When staff are required to undertake these inspections, they are allocated a company car for use on the day of the inspections. (One car per person & day)
- However, a car may be allocated to several members of staff as required throughout the working day.
- A member of staff may inspect several properties on a given date, but a property is only inspected once on a given date.

StaffPropertyInspection

<u>propertyNo</u>	<u>iDate</u>	iTime	pAddress	comments	staffNo	sName	carReg
PG4	18-Oct-03	10:00	6 Lawrence St, Glasgow	need to replace crockery	SG37	Ann Beech	M231 JGR
PG4	22-Apr-04	09:00	6 Lawrence St, Glasgow	in good order	SG14	David Ford	M533 HDR
PG4	1-Oct-04	12:00	6 Lawrence St, Glasgow	damp rot in bathroom	SG14	David Ford	N721 HFR
PG16	22-Apr-04	13:00	5 Novar Dr, Glasgow	replace living room carpet	SG14	David Ford	M533 HDR
PG16	24-Oct-04	14:00	5 Novar Dr, Glasgow	good condition	SG37	Ann Beech	N721 HFR

Now 1NF + PK

- When staff are required to undertake these inspections, they are allocated a company car for use on the day of the inspections. (One car per person & day)
- However, a car may be allocated to several members of staff as required throughout the working day.
- A member of staff may inspect several properties on a given date, but a property is only inspected once on a given date.

StaffPropertyInspection

propertyNo iDate iTim	e pAddress	comments	staffNo	sName	carReg
-----------------------	------------	----------	---------	-------	--------

Draw all FDs

- When staff are required to undertake these inspections, they are allocated a company car for use on the day of the inspections. (One car per person & day)
- However, a car may be allocated to several members of staff as required throughout the working day.
- A member of staff may inspect several properties on a given date, but a property is only inspected once on a given date.

StaffPropertyInspection

propertyNo	<u>iDate</u>	iTime	pAddress	comments	staffNo	sName	carReg
		≜	↑ (full, P	К) 🕇	Ť	f	↑

- When staff are required to undertake these inspections, they are allocated a company car for use on the day of the inspections. (One car per person & day)
- However, a car may be allocated to several members of staff as required throughout the working day.
- A member of staff may inspect several properties on a given date, but a property is only inspected once on a given date.

StaffPropertyInspection

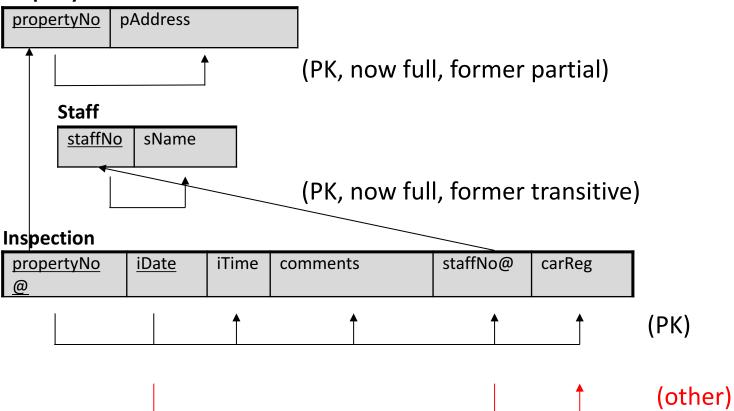
propertyNo	<u>iDate</u>	iTime	pAddress		comments	staffNo	sName	carReg
		Ť	Ť	(full <i>,</i> P	К) 🕇	Ť	ſ	_
				(partia	I)		tra	ansitive)

- When staff are required to undertake these inspections, they are allocated a company car for use on the day of the inspections. (One car per person & day)
- However, a car may be allocated to several members of staff as required throughout the working day.
- A member of staff may inspect several properties on a given date, but a property is only inspected once on a given date.

StaffPropertyInspection

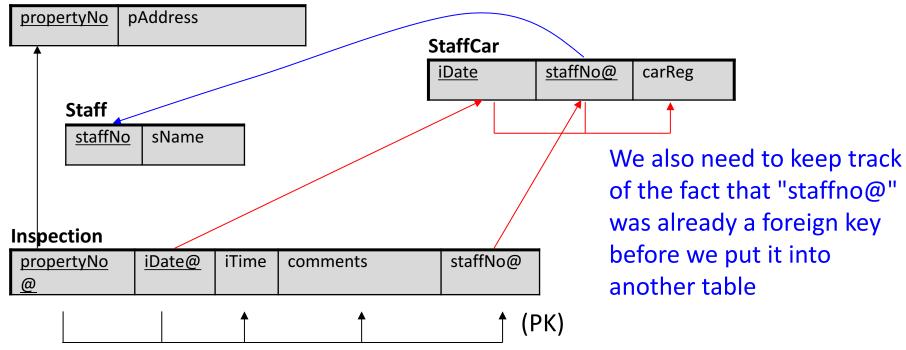
prope	<u>ertyNo</u>	<u>iDate</u>	iTime	pAddress		comn	nents	2	staffNo	sName	carReg
			Ť	ſ	(full, P	K)	Ť		Ť	Ť	↑
				^	(partia	I)					(transitive)
(othe	er)										_

- When staff are required to undertake these inspections, they are allocated a company car for use on the day of the inspections. (One car per person & day)
- However, a car may be allocated to several members of staff as required throughout the working day.
- A member of staff may inspect several properties on a given date, but a property is only inspected once on a given date.

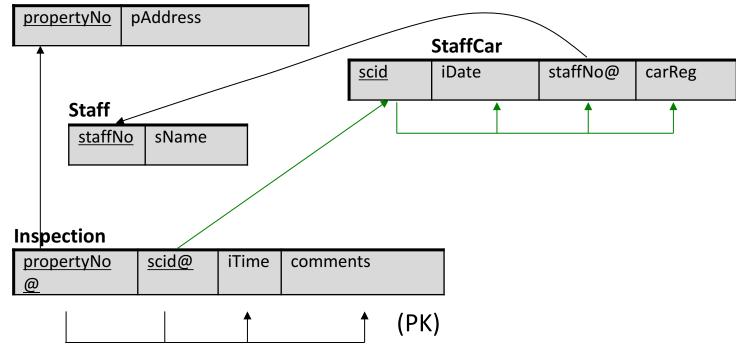

StaffPropertyInspection

propertyN	lo <u>iDate</u>	iTime	pAddress		commei	nts	staffNo	sName	carReg
		Ť	Ť	(full, P	К)	1	Ť	Ť	ſ
			↑	(partia	I)			tr	ansitive)
(other)									↑
^			1	(Candi	date K)↑		1	
			Ť	(Candi	date K) ↑	Ť	Ť	

- When staff are required to undertake these inspections, they are allocated a company car for use on the day of the inspections. (One car per person & day)
- However, a car may be allocated to several members of staff as required throughout the working day.
- A member of staff may inspect several properties on a given date, but a property is only inspected once on a given date.

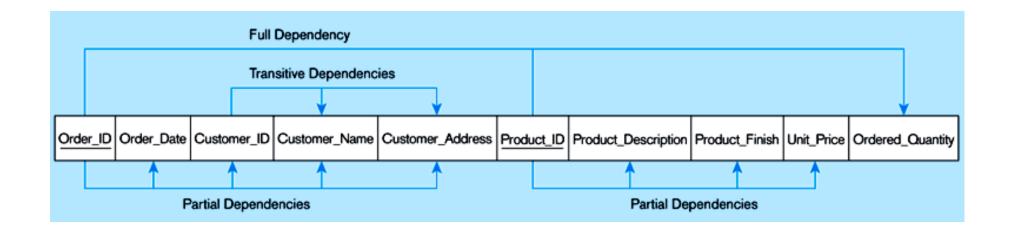


Property


Property

Extra question: We now have a composite FK (idate, staffno) from INSPECTION to STAFFCAR. Thus (idate, staffno) is a composite PK in STAFFCAR. Assume we like to replace it with a surrogate key. How would the resulting completely normalized tables look like?

Property


This is now fully normalized.

Downside: we need to join INSPECTION with STAFFCAR every time we like to find out about when a property (by "properyNo") was last inspected

Boyce-Codd Normal Form

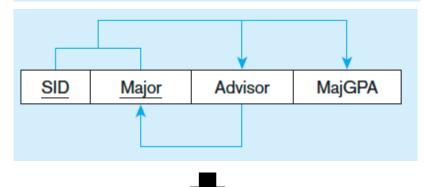
Quick recap FDs

- <u>Functional Dependency</u>: The value of one set of attributes (the determinant) uniquely determines the value of another set of attributes (the dependents)
- A <u>superkey</u> is as a set of attributes of a relation schema upon which all attributes of the schema are functionally dependent.
- A <u>candidate key (CK)</u> is an attribute or non-redundant combination of attributes that uniquely identifies a row in a relation
- **<u>2NF</u>**: no <u>Partial FD</u>: A FD in which one or more nonkey attributes are functionally dependent on part (but not all) of the PK
- **<u>3NF</u>**: no <u>**Transitive dependency</u>**: An FD between two (or more) <u>nonkey attributes</u></u>

Boyce-Codd Normal Form (BCNF)

- Boyce-Codd normal form (BCNF)
 - A relation is in BCNF, if and only if, every determinant is a candidate key.
- The difference between 3NF and BCNF is that for a functional dependency $A \rightarrow B$,
 - 3NF allows this dependency in a relation if <u>B is a</u> primary-key attribute and A is not a candidate key,
 - whereas BCNF insists that for this dependency to remain in a relation, A must be a candidate key.

3NF to BCNF

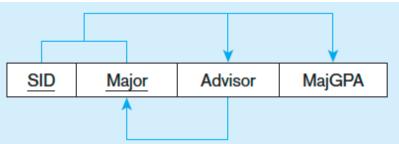

STUDENT ADVISOR

ID	Major	Advisor	MajGPA
23	Physics	Hawking	4.0
23	Music	Mahler	3.3
56	Literature	Michener	3.2
89	Music	Bach	3.7
78	Physics	Hawking	3.5
	23 23 56 89	23 Physics 23 Music 56 Literature 89 Music	23 Physics Hawking 23 Music Mahler 56 Literature Michener 89 Music Bach

3NF to BCNF

STUDENT ADVISOR

SID	Major	Advisor	MajGPA			
123	Physics	Hawking	4.0			
123	Music	Mahler	3.3			
456	Literature	Michener	3.2			
789	Music	Bach	3.7			
678	Physics	Hawking	3.5			



3NF to BCNF

STUDENT ADVISOR

SID	Major	Advisor	MajGPA			
123	Physics	Hawking	4.0			
123	Music	Mahler	3.3			
456	Literature	Michener	3.2			
789	Music	Bach	3.7			
678	Physics	Hawking	3.5			

5	STUDEN	Т		ADVISOR	
	SID	Advisor	MajGPA	Advisor	Major
	123	Hawking	4.0	Hawking	Physics
	123	Mahler	3.3	Mahler	Music
	456	Michener	3.2	Michener	Literature
	789	Bach	3.7	Bach	Music
	678	Hawking	3.5		

		➡			
				,	
SID	Adviso	r Major	Maj	GPA	
		↑			

BCNF vs 3NF

- <u>BCNF</u>: For every functional dependency X->Y in a set F of functional dependencies over relation R, either:
 - X is a superkey of R
 - (or Y is a subset of X)
- <u>**3NF</u>**: For every functional dependency X->Y in a set F of functional dependencies over relation R, either:</u>
 - X is a superkey of R, or
 - Y is a subset of K for some key K of R
 - *N.b.,* no subset of a key is a key
 - (or Y is a subset of X)

Back to Conceptual Design

- Now that we know how to find FDs, it's a straight-forward process:
 - Search for "bad" FDs
 - If there are any, then keep decomposing the table into sub-tables until no more bad FDs
 - When done, the database schema is normalized

Recall: there are several normal forms...

Boyce-Codd Normal Form (BCNF)

- Main idea is that we define "good" and "bad" FDs as follows:
 - $X \rightarrow A$ is a "good FD" if X is a (super)key
 - In other words, if A is the set of all attributes
 - $X \rightarrow A$ is a "bad FD" otherwise
- We will try to eliminate the "bad" FDs!

Boyce-Codd Normal Form (BCNF)

- Why does this definition of "good" and "bad" FDs make sense?
- If X is not a (super)key, it functionally determines some of the attributes; therefore, those other attributes can be duplicated
 - Recall: this means there is redundancy
 - And redundancy like this can lead to data anomalies!

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234	Lawyer

Boyce-Codd Normal Form

BCNF is a simple condition for removing anomalies from relations:

A relation R is <u>in BCNF</u> if: if $\{A_1, ..., A_n\} \rightarrow B$ is a *non-trivial* FD in R then $\{A_1, ..., A_n\}$ is a superkey for R

Equivalently: \forall sets of attributes X, either (X⁺ = X) or (X⁺ = all attributes)

In other words: there are no "bad" FDs

Example

Name	SSN	PhoneNumber	City
Fred	123-45-6789	206-555-1234	Seattle
Fred	123-45-6789	206-555-6543	Seattle
Joe	987-65-4321	908-555-2121	Westfield
Joe	987-65-4321	908-555-1234	Westfield

{SSN} → {Name,City}

This FD is *bad* because it is <u>not</u> a superkey

 \Rightarrow <u>Not</u> in BCNF

What is the key? {SSN, PhoneNumber}

Example

Name	<u>SSN</u>	City
Fred	123-45-6789	Seattle
Joe	987-65-4321	Madison

<u>SSN</u>	PhoneNumber
123-45-6789	206-555-1234
123-45-6789	206-555-6543
987-65-4321	908-555-2121
987-65-4321	908-555-1234

{SSN} → {Name,City}

This FD is now good because it is the key

Let's check anomalies:

- Redundancy ?
- Update ?
- Delete ?

Now in BCNF!

BCNFDecomp(R):

```
BCNFDecomp(R):
Find a set of attributes X s.t.: X<sup>+</sup> ≠ X and X<sup>+</sup> ≠
[all attributes]
```

Find a set of attributes X which has non-trivial "bad" FDs, i.e. is not a superkey, using closures

```
BCNFDecomp(R):
Find a set of attributes X s.t.: X<sup>+</sup> ≠ X and X<sup>+</sup> ≠
[all attributes]
```

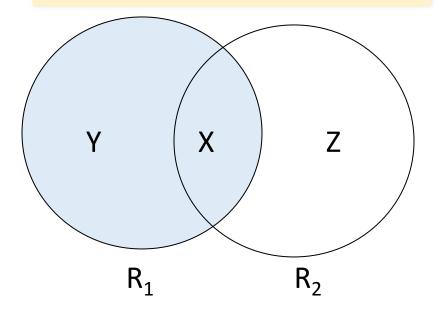
```
if (not found) then Return R
```

If no "bad" FDs found, in BCNF!

```
BCNFDecomp(R):
Find a set of attributes X s.t.: X<sup>+</sup> ≠ X and X<sup>+</sup> ≠
[all attributes]
```

if (not found) then Return R

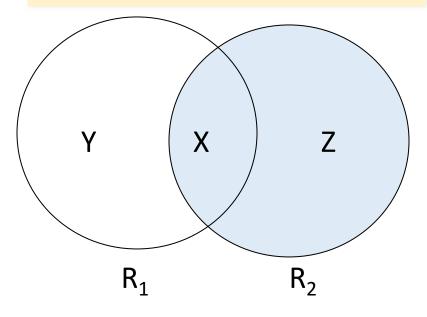
let
$$Y = X^+ - X$$
, $Z = (X^+)^C$


Let Y be the attributes that *X* functionally determines (+ that are not in X)

And let Z be **the** *complement*, the other attributes that it *doesn't*

```
BCNFDecomp(R):
Find a set of attributes X s.t.: X<sup>+</sup> ≠ X and X<sup>+</sup> ≠
[all attributes]
```

<u>if</u> (not found) <u>then</u> Return R


<u>let</u> $Y = X^+ - X$, $Z = (X^+)^C$ decompose R into $R_1(X \cup Y)$ and $R_2(X \cup Z)$ Split into one relation (table) with X plus the attributes that X determines (Y)...


```
BCNFDecomp(R):
Find a set of attributes X s.t.: X<sup>+</sup> ≠ X and X<sup>+</sup> ≠
[all attributes]
```

<u>if</u> (not found) <u>then</u> Return R

<u>let</u> $Y = X^+ - X$, $Z = (X^+)^C$ decompose R into $R_1(X \cup Y)$ and $R_2(X \cup Z)$ And one relation with X plus the attributes it *does not* determine (Z)


```
BCNFDecomp(R):
Find a set of attributes X s.t.: X<sup>+</sup> ≠ X and X<sup>+</sup> ≠
[all attributes]
```

if (not found) then Return R

<u>let</u> $Y = X^+ - X$, $Z = (X^+)^C$ decompose R into $R_1(X \cup Y)$ and $R_2(X \cup Z)$

Return BCNFDecomp(R₁), BCNFDecomp(R₂)

Proceed recursively until no more "bad" FDs!

Example

```
BCNFDecomp(R):
Find a set of attributes X s.t.: X<sup>+</sup> ≠ X and X<sup>+</sup> ≠
[all attributes]
```

if (not found) then Return R

<u>let</u> $Y = X^+ - X$, $Z = (X^+)^C$ decompose R into $R_1(X \cup Y)$ and $R_2(X \cup Z)$

Return BCNFDecomp(R₁), BCNFDecomp(R₂)

$$\begin{array}{l} \{A\} \rightarrow \{B,C\} \\ \{C\} \rightarrow \{D\} \end{array}$$

Example

R(A,B,C,D,E) $\{A\} \rightarrow \{B,C\}$ $\{C\} \rightarrow \{D\}$ R(A,B,C,D,E) ${A}^+ = {A,B,C,D} \neq {A,B,C,D,E}$ $R_1(A,B,C,D)$ $\{C\}^+ = \{C, D\} \neq \{A, B, C, D\}$ R₁₁(C,D) R₁₂(A,B,C) R₂(A,E)

Practice

• Activity-22.ipynb