L13: Normalization

CS3200 Database design (sp18 s2)
https://course.ccs.neu.edu/cs3200sp18s2/
2/26/2018

274

Announcements!

« Keep bringing your name plates ©
« Page Numbers now bigger (may change slightly)

« Exam 1 discussion: solutions posted on BB, questions on grading: Piazza, send
to instructors only

e Project part 1 discussion likely Thursday in class

« Outline
— Continue with ER modeling and Normalization
— Transactions after Spring Break

275

Practice

Exercise 1

« Create a relational schema to represent the following E-R Diagram:

Product
Product ID
Product_Name
{Price History

(Effective_Date,
Price) }

277

Exercise 1

« Create a relational schema to represent the following E-R Diagram:

Product
Product ID
Product_Name
{Price History

(Effective_Date,
Price) }

Product

Product ID |Product_Name

Price_History
Product ID |Effective Date | Price

278

Exercise 2

« Create a relational schema to represent the following E-R Diagram:

Product
Product ID
Product_Name
StandardPrice
({customer,

Price})

Product
Product ID |Product_Name

279

Exercise 2

« Create a relational schema to represent the following E-R Diagram:

Product
Product ID

Product_Name
StandardPrice

({customer,
Price})
Product
Product ID | Product_Name [Standard_Price Customer
CustomerName
o o

SpecialPrice -
Product ID |customer Price

280

Exercise 3

Student
Student ID .
Name e Create a relational schema
Campus_Address to represent this E-R Diagram:
Major

Grade

Course
Lourse 1D Instructor
Semester Taught Instructor Name
Title Location

281

Exercise 3

Student ID
Name
Campus_Address
Major

Registers Grade
For

Course
Course ID

Semester Taught i
Title

Instructor

Instructor Name
Teaches | Location

282

Exercise 3: Solution

Student

Student

Student ID
Name
Campus_Address
Major

Grade

Course

Student ID

Name

Campus_Address

Major

Course 1D

Semester Taught
Title

Course_Registration

@Student ID

@Course ID

@Semester Taught

Grade

Course /

/

Course ID

Semester Taught |Title

@Instructor_Name

Instructor

Instructor Name

Location

don't forget:

Instructor

Instructor Name

Location

"not null" constraint

283

Example: Pine Valley Furniture Company

Product

Product ID
Product_Description
Product_Finish
Standard_Price
On_Hand

Customer
Customer ID

Customer_Name
Address

City

State

Zip

Order_Line

Quantity]

Order

Order ID
Order_Date

284

Example: Pine Valley Furniture
Referential Integrity Constraints

CUSTOMER

Customer_ID Customer_Name Address | City State Zip

(implements 1:N relationship
Order_ID | Order_Date | Customer_ID between customer and order)

Referential integrity
constraints are drawn via
arrows from dependent

Combined, these are
a composite primary

key (uniquely

I

\]
identifies the order/f————/ (FK) to parent table (PK)
line)...individually PRODUCT

they are foreign keys
(together implement
M:N relationship
between order and
product)

Product_ID Product_Description | Product_Finish | Standard_Price| On_Hand

Source: Compare with Fig 4-30: Hoffer, Ramesh, Topi, "Modern database management," 10t ed, 2010.

285

. Normal forms
olple
Functional Dependencies

Design Theory

« Design theory is about how to represent your data to avoid anomalies.

e Itis a mostly mechanical process

— Tools can carry out routine portions

« We have a notebook implementing all algorithms!
 We'll play with it in the activities!

287

Data Normalization

« Data normalization is the process of decomposing relations with
anomalies to produce smaller, well-structured relations

e Goals of normalization include:
— Minimize data redundancy
— Simplifying the enforcement of referential integrity constraints
— Simplify data maintenance (inserts, updates, deletes)
— Improve representation model to match "the real world"

288

Well-Structured Relations

o A well-structured relation contains minimal data redundancy and allows users
to insert, delete, and update rows without causing data inconsistencies

« Anomalies are errors or inconsistencies that may result when a user attempts
to update a table that contains redundant data.

« Three types of anomalies:
— Insertion Anomaly — adding new rows forces user to create duplicate data

— Deletion Anomaly — deleting rows may cause a loss of data that would be needed for
other future rows

— Modification Anomaly — changing data in a row forces changes to other rows because of
duplication

e General rule of thumb: a table should not pertain to more than one entity
type

289

Normal Forms

Normal Form: a state of a relation
that results from applying simple

o 1st Normal Form (1NF) = All tables are flat rules regarding FDs to that relation
. 3rd Normal Form (3NF) DB designs based on
- no more transitive FDs (also "bad") FIDE (funCtI?nal Our focus
dependencies), next
« Boyce-Codd Normal Form (BCNF) intended to prevent

. _ data anomalies
- every determiniant is a candidate key

4th: any multivalued dependencies have been removed (see textbook)

5th: any remaining anomalies have been removed (see text book)

290

1st Normal Form (1NF)

Student Courses
Mary {CS3200, CS4240}
Joe {CS3200, CS4240}

Violates 1NF.

291

1st Normal Form (1NF)

Student

Courses

Mary

{CS3200, CS4240}

Joe

{CS3200, CS4240}

Violates 1NF.

Student Courses
Mary CS3200
Mary CS4240
Joe CS3200
Joe CS4240

In 15t NF

1NF Constraint: Types must be atomic!

292

Student | Course | Room 1
Mary CS3200 |WVF20
Joe CS3200 |WVF20
Sam CS3200 |WVF20

=

Constraints Prevent (some) Anomalies in the Data

A poorly designed database causes anomalies:

If every course is in
only one room,
contains redundant
information!

293

A poorly designed database causes anomalies:

Student | Course | Room
Mary CS3200 |WVFE20
Joe CS3200 B12

Sam CS3200 |WVF20

Constraints Prevent (some) Anomalies in the Data

If we update the
room number for
one tuple, we get
inconsistent data =
an update anomaly

294

Constraints Prevent (some) Anomalies in the Data

A poorly designed database causes anomalies:

Student

Course

Room

If everyone drops the class, we lose what
room the class is in! = a delete anomaly

295

€54240

B12

Student | Course | Room
Mary CS3200 |WVFE20
Joe CS3200 [WVF20
Sam CS3200 |WVF20

Constraints Prevent (some) Anomalies in the Data

A poorly designed database causes anomalies:

Similarly, we can’t
reserve a room
without students
= an insert
anomaly

296

Constraints Prevent (some) Anomalies in the Data

Course

Room

CS3200

WVF20

Student | Course
Mary CS3200
Joe CS3200
Sam CS3200

CS4240

B12

Is this form better?

 Redundancy?

* Update anomaly?
* Delete anomaly?
* [nsert anomaly?

Next: develop theory to understand why this design may
be better and how to find this decomposition...

297

sName position |salary

}Address \

2 Deer Rd, London

63 Main St, Glasgow
63 Main St, Glasgow
6 Argyll St, Aberdeen
63 Main St, Glasgow

2 Deer Rd, London

John White | Manager 30000
Ann Beech | Assistant | 12000
David Ford | Supervisor | 18000
Mary Howe | Assistant 9000
Susan Brand | Manager | 24000
Julie Lee Assistant 9000

Staff
sta sName position |salary | branchNo
SL21 John White | Manager | 30000 | B005
SG37 Ann Beech | Assistant | 12000 | B003
SG14 David Ford | Supervisor | 18000 | B0O03
SA9 Mary Howe | Assistant 9000 | BOO7
SG5 Susan Brand | Manager | 24000 | B0O3
SL41 Julie Lee Assistant 9000 | B0OO5

Branchr_\

b@ngo bAddress

B005 22 Deer Rd, London
B007 16 Argyll St, Aberdeen
B003 163 Main St, Glasgow

298

Is This Table Well Structured?

EMPLOYEE2
WJ

Emp_ID Name Dept_Name Salary [| Course Title

100 Margaret Simpson Marketing 48, SPSS 6/18/200X
100 Margaret Simpson Marketing 48, Surveys 10/7/200X
140 Alan Beeton Accounting 52,000 Tax Acc 12/8/200X
110 Chris Lucero Info Systems 43,000 SPSS 1/12/200X
110 Chris Lucero Info Systems 43,000 C++ 4/22/200X
190 Lorenzo Davis Finance 66,000

160 Susan Martin Marketing 42,000 SPSS 8/19/200X

w Marketing 42,000 Java 8/12/200X
A\ __J

e Does it contain anomalies?

— Insertion: if an employee takes a new class we need to add duplicate data (Name, Dept_Name, Salary)
— Deletion: If we remove employee 140, we lose information about the existence of a Tax Acc class
— Modification: Giving a salary increase to employee 100 forces us to update multiple records

« Why do these anomalies exist?

— Because there are two themes (entity types) in one relation. This results in duplication, and an
unnecessary dependency between the entities

299

Normalizing Previous Employee/Class Table

Employee

Emp_ID Name Dept_Name Salary
’f(;/ Margaret Simpson Marketing 48000

140> Alan Beeton Accounting 52000

110 %, Chris Lucero Info Sys 43000
w

190% *“Lorenzo Davis Finance 55000

150 "‘:ﬁqsan Martin Marketing 42000

D
., _ .
S .
S R
% * % . °
DO
.
AT .

This seems more complicated

Why might this approach be
superior to the previous one?

", Cours e_Completion
E?mpzm/ CW Date_Completed Course
1 00 L [E 6/1 912005 W Course_Title

100 2 10’7’2004 """::::::I;_Z_.;SE?1 SPSS
Yy 1 ot oumil g Surveys
110 4 e y 12 120 R . N >3 Tax Acc

110 4 et 222003 oo b e, > 4 C+
T T I Lo
150 5 8/12/2002

300

Functional Dependencies ("FDs")

Definition:
If two tuples agree on the attributes

A, A, .., A,
then they must also agree on the attributes

B, B,, .., B,

Formally:

A, A, ...A >B,B,, .., B_

301

Functional Dependencies ("FDs")

Def: Let A,B be sets of attributes
We write A = B or say A functionally determines
B if, for any tuples t, and t,:

t,[A] = t,[A] implies t,[B] = t,[B]

and we call A = B a functional dependency

A (determinant) 2B (dependent)

A->B means that
“whenever two tuples agree on A then they agree on B.”

302

A Picture Of FDs

Defn (again):
Given attribute sets A={A,,...,A.,} and
B={B,...B.,}InR,

303

A Picture Of FDs

Defn (again):
Given attribute sets A={A,,...,A.,} and
B={B,...B.,}InR,

The functional dependency A= B on
R holds if for any t,t; in R:

304

A Picture Of FDs

Defn (again):

If t,f agree here..

Given attribute sets A={A,,...,A.,} and
B={B,..B,}inR,

The functional dependency A= B on
R holds if for any t,t, in R:

if [A,] = t[A,] AND t[A;]=t[A,] AND
. AND t[A] = t[A,]

305

A Picture Of FDs

Defn (again):

If t,f agree here..

|

...they also agree here!

Given attribute sets A={A,,...,A.,} and
B={B,..B,}inR,

The functional dependency A= B on
R holds if for any t,t, in R:

if [A,] = t[A,] AND t[A;]=t[A,] AND
. AND t[A] = t[A,]

then t,[B,] = t[B,] AND t,[B,]=t[B,]
AND ... AND t[B,] = t[B,]

306

FDs for Relational Schema Design

e High-level idea: why do we care about FDs?
— Start with some relational schema
— Find out its functional dependencies (FDs)

— Use these to design a better schema

* One which minimizes the possibility of anomalies

307

Functional Dependencies as Constraints

A functional dependency is a form
of constraint

e Holds on some instances (but not
others) — can check whether there
are violations

* Part of the schema, helps define a
valid instance

Recall: an instance of a schema is a multiset of
tuples conforming to that schema, i.e. a table

Student | Course | Room

Mary CS3200 | WVF20

Joe

CS3200 | WVF20

Sam

CS3200 | WVF20

Note: The FD {Course}
-> {Room} holds on this
instance

308

Functional Dependencies as Constraints

Note that:

You can check if an FD is
violated by examining a single
instance;

However, you cannot prove
that an FD is part of the
schema by examining a single
Instance.

* This would require checking
every valid instance

Student | Course | Room
Mary CS3200 |WVF20
Joe CS3200 |WVF20
Sam CS3200 | WVF20

However, cannot prove
that the FD {Course} ->
{Room} is part of the

schema

309

More Examples

An FD is a constraint which holds, or does not hold on

an instance:
EmpID |Name Phone Position
E0045 Smith 1234 Clerk
E3542 Mike 9876 Salesrep
E1111 Smith 9876 Salesrep
E9999 Mary 1234 Lawyer

—

Elb ~> VAL

310

More Examples

EmpID |Name Phone Position
E0045 Smith 1234 Clerk
E3542 Mike 9876 <« |Salesrep
E1111 Smith 9876 <« |Salesrep
E9999 Mary 1234 Lawyer

{Position} - {Phone}

311

More Examples

EmpID |Name Phone Position
E0045 Smith 1234 — |Clerk
E3542 Mike 9876 Salesrep
E1111 Smith 9876 Salesrep
E9999 Mary 1234 — |Lawyer

but not {Phone} - {Position}

312

Practice

Find at least three FDs which

A B C D B are violated on this instance:
1 2 4 3 6 5
A e }
3 2 5 1 8
{c Y>{R }
1 4 4 5 7 {4 }>{8E }
1 2 4 3 6 |
3 2 5 1 8

313

2. Finding FDs

What you will learn about next

e “Good” vs. “Bad” FDs: Intuition
e Finding FDs
e Closures

« PRACTICE: Compute the closures

315

INF

e First normal form: A relation that has a primary key and in which
there are no repeating groups
— No multivalued attributes

— Every attribute value is atomic (single fact in each table cell)

e All relations are in INF

« Normalization steps (from tabular view of data):
— Goal: create a relation from the tabular view
— Action: remove repeating groups

— Action: select the primary key 316

Example: Convert To 1NF

4oduct ID Product_
Description

)|

Order ID Order_ Customer_ Customer_ Customer_ Product_ Unit_ Ordered
Date ID Name Address Finish Price Quantity
1006 10/24/2004 2 Value Plano, TX 7 Dining Natural 800.00 2
Furniture Table Ash
5 Writer's Cherry 325.00 2
Desk
4 Entertainment Natural 650.00 1
Center Maple
1007 10/25/2004 6 Furniture Boulder, 11 4-Dr Oak 500.00 4
Gallery coO Dresser
4 Entertainment Natural 650.00 3
Center Maple

« Normalization steps (from tabular view of data):

— Goal: create a relation from the tabular view

— Action: remove repeating groups

— Action: select the primary key

317

Action: Remove Repeating Groups

Order ID Order_ Customer_ Customer_ Customer_ Product ID Product_ Product_ Unit_ Ordered_
Date ID Name Address Description Finish Price Quantity

1006 10/24/2004 2 Value Plano, TX 7 Dining Natural 800.00 2
Furmniture Table Ash

1006 10/24/2004 2 Value Plano, TX 5 Writer's Cherry 325.00 2
Fumniture Desk

1006 10/24/2004 2 Value Plano, TX 4 Entertainment Natural 650.00 1
Furniture Center Maple

1007 10/25/2004 6 Furniture Boulder, 11 4-Dr Oak 500.00 4
Gallery cO Dresser

1007 10/25/2004 6 Furniture Boulder, 4 Entertainment Natural 650.00 3
Gallery CO Center Maple

e |s the data view a relation now?
— Answer: yes

e |s it well-structured?

— Answer: no

318

What are the anomalies in this table?

Order ID Order_ Customer_ Customer_ Customer_ Product ID Product_ Product_ Unit_ Ordered_
Date ID Name Address Description Finish Price Quantity

1006 10/24/2004 2 Value Plano, TX 7 Dining Natural 800.00 2
Furmniture Table Ash

1006 10/24/2004 2 Value Plano, TX 5 Writer's Cherry 325.00 2
Furmniture Desk

1006 10/24/2004 2 Value Plano, TX 4 Entertainment Natural 650.00 1
Fumniture Center Maple

1007 10/25/2004 6 Furniture Boulder, 11 4-Dr Oak 500.00 4
Gallery cO Dresser

1007 10/25/2004 6 Furniture Boulder, 4 Entertainment Natural 650.00 3
Gallery CO Center Maple

e Insertion: If new product is ordered for order 1007 of existing customer, customer data
must be re-entered, causing duplication

e Deletion: If we delete the Dining Table from Order 1006, we lose information concerning
this item's finish and price

« Update: Changing the price of product ID 4 requires update in several records

« Why do these anomalies exist? Because there are multiple themes (entity types) in one
relation. -> duplication, and unnecessary dependency between entities

319

Action: Select A Primary Key

 |dentify FDs and CKs (candidate keys = minimal superkeys)

e Four determinants and functional dependencies

Order_ID - Order_Date, Customer_ID, Customer_Name, Customer_Address

Customer_ID - Customer_Name, Customer_Address

Product_ID - Product_Description, Product_Finish, Unit_Price
Order_ID, Product_ID - Ordered_Quantity

e Select a PK from CKs
(Order_ID, Product_ID)

Full Dependency
Transitive Dependencies l
Order_ID | Order_Date | Customer_ID | Customer_Name | Customer_Address | Product_ID | Product_Description | Product_Finish | Unit_Price | Ordered_Quantity
Partial Dependencies Partial Dependencies

320

Next Step: Convert To 2NF

« 2NF: A relation in 2NF in which every non-key attribute is fully

functionally dependent on the primary key

« Partial FD: A FD in which one or more nonkey attributes are

functionally dependent on part (but not all) of the PK

Full Dependency

Transitive Dependencies

y

:

Order_ID

Order_Date

Customer_ID | Customer_Name

Customer_Address

Product_ID

Product_Description | Product_Finish

Unit_Price

Ordered_Quantity

1

1

1

]

Partial Dependencies

1

Partial Dependencies

321

Getting A Relation To 2NF

e Create a new relation for each primary key attribute that is a
determinant in a partial dependency

— That attribute is the primary key in the new relation

« Move the nonkey attributes that are dependent on this primary key
attribute(s) from the old relation to the new relation

e Exercise: Convert 1NF relation to 2NF

Full Dependency

(Transitive Dependencies ! /1
v v

Order_ID ‘Order_Dahe Customer_ID | Customer_Name | Customer_Address |fProduct_ID | Product_Description | Product_Finish Urit_Priced Ordéed_ouanﬁty
. \/

7 I) i
q Partial Dependencies Partial Dependencies
T 322

—

A INF Relation Is In 2NF if

« The PK consists of only one attribute. There cannot be a partial dependency in
such a relation

e (or) no nonkey attributes exist in the relation (thus all attributes in the
relation are components of the PK). There are no FDs in such a relation

e (or) every nonkey attribute is functionally dependent on the full set of PK
attributes.

e

Order_ID | Product ID o%ad_auag»—l, ORDER_LINE (3NF)

Product_ID | Product_Description | Product_Finish | Unit_Price PRODUCT (3NF)

Order_ID | Order_Date | Customer_ID | Customer_Name | Customer_Address CUSTOMER_ORDER (2NF)

A A

Transitive Dependencies

323

3NF

« 3NF: A relation that is in 2NF and has no transitive dependencies present

« Transitive dependency: An FD between two (or more) nonkey attributes

— FD between the PK and one or more nonkey attributes that are dependent on the PK via

another nonkey a

ttribute

« Transitive dependency example:

Order_ID

Product_ID | Ordered_Quantity

ORDER_LINE (3NF)

Product_ID | Product_Description | Product_Finish | Unit_Price PRODUCT (3NF)
f— _——
[
Order_ID | Order_Date |\/Customer D | Customer_Name | Customer_Addres CUSTOMER_ORDER (2NF)
1 'y #
Vs X Transitive Dependencies)

324

Removing Transitive Dependencies

For each nonkey attribute(s) that is a determinant in a relation, create a new
relation.

— That attribute becomes the PK of the new relation

« Move all of the attributes that are functionally dependent on the attribute
from the old to the new relation

o Leave the attribute (which serves as a PK in the new relation in the old
relation to serve as a FK that allows us to associate the two relations

e Exercise: Convert relation below to 3NF

Order_ID | Order_Date | Customer_ID | Customer_Name | Customer_Address CUSTOMER_ORDER (2NF)

1]

Transitive Dependencies

325

Third Normal Form

« Example converted to 3NF:

Order_ID | Order_Date

Customer_ID ORDER (3NF)

Customer_ID

Customer_Name

Customer_Address

e Original example in 2NF:

/’

CUSTOMER (3NF)

Order_ID | Order_Date

Customer_ Customer_Name

Customer_Addre}s

[—

1

& Transitive Dependencies j

CUSTOMER_ORDER (2NF)

326

Full Example: From 1NF to 3NF

Before (3NF):

Order_ID | Order_Date | Customer_ID | Customer_Name | Customer_Address | Product_ID | Product_Description | Product_Finish | Unit_Price | Ordered_Quantity

After (3NF): TN i
\> =)2
rderID | Product 1D | Ordered_ Quanii* ORDER LINE (GNF) \ 2 < 2/ (/A\ G

Product_ID | Product_Description | Product_Finish | Unit_Price PRODUCT (3NF)

Order_ID | Order_Date | Customer_ID ORDER (3NF)
~—

Customer_ID | Customer_Name | Customer_Address CUSTOMER (3NF)

327

Normalization Summary

« Data normalization is the process of decomposing relations with
anomalies to produce smaller, well-structured relations

e Goals of normalization include:
— Minimize data redundancy
— Simplifying the enforcement of referential integrity constraints
— Simplify data maintenance (inserts, updates, deletes)
— Improve representation model to match "the real world"

328

“Good” vs. “Bad” FDs

We can start to develop a notion of good vs. bad FDs:

EmpID [Name |Phone |Position |
E0045 |Smith |1234 Clerk
E3542 |Mike 9876 Salesrep
E1111 |Smith [9876 Salesrep
1E9999 | Mary 1234 Lawyer |

Intuitively:

EmplD -> Name, Phone,

Position is “good FD”

* Minimal redundancy,
less possibility of
anomalies

329

“Good” vs. “Bad” FDs

We can start to develop a notion of good vs. bad FDs:

EmpID |Name |Phone |Position Intuitively:
E0045 |Smith [1234 Clerk

E3542 | Mike 9876 Salesrep
E1111 |Smith | 9876 Salesrep

E9999 | Mary 1234 Lawyer | But Position -> Phone is @

“bad FD”

 Redundancy!
Possibility of data
anomalies

EmplD -> Name, Phone,
Position is “good FD”

330

“Good” vs. “Bad” FDs

Student | Course | Room
Mary CS3200 | WVF20
Joe CS3200 | WVF20
Sam CS3200 | WVF20

Returning to our original example...
can you see how the “bad FD”

{Course} -> {Room} could lead to an:

* Update Anomaly
* Insert Anomaly
* Delete Anomaly

Given a set of FDs (from user) our goal is to:

1. Find all FDs, and
2. Eliminate the “Bad Ones".

331

FDs for Relational Schema Design
« High-level idea: why do we care about FDs?
1. Start with some relational schema
2. Find out its functional dependencies (FDs)

: Thi t be tricky!
3. Use these to design a better schema IS part.can be tricky

* One which minimizes possibility of anomalies

332

Finding Functional Dependencies

« There can be a very large number of FDs...
— How to find them all efficiently?

« We can’t necessarily show that any FD will hold on all instances...
— How to do this?

We will start with this problem:
Given a set of FDs, F, what other FDs must hold?

333

Finding Functional Dependencies

 Equivalent to asking: Given a set of FDs, F = {f,,...f.}, does an FD g hold?
— Inference problem: How do we decide?

Example:
Products Provided FDs:
Name Color | Category Dep Price 1. {Name} = {Color}
Gizmo |Green |Gadget |Toys 49 2. {Category} = {Department}
Widget |Black |Gadget |Toys 59 3. {Color, Category} =2 {Price}
Gizmo |Green | Whatsit Garden |99

Given the provided FDs, we can see that {Name, Category} -
{Price} must also hold on any instance...

Which / how many other FDs do?!?

334

Finding Functional Dependencies

 Equivalent to asking: Given a set of FDs, F = {f,,...f.}, does an FD g hold?
— Inference problem: How do we decide?

Answer: Three simple rules called Armstrong’s Rules.
1. Split/Combine,
2. Reduction, and
3. Transitivity... ideas by picture

335

1. Split/Combine

336

1. Split/Combine

A, ... A, > B,..B,

... iIs equivalent to the following n FDs...

A,,..., A, =2 B fori=1,..,n

337

1. Split/Combine

And vice-versa, A,,..., A, = B. fori=1,..,n

... IS equivalent to ...

A, ... A > B,..B,
338

2. Reduction (Trivial) (=)
)

A, A, 2 A, for any j=1,..,m

339

3. Transitive Closure

A, ..., A =2 B,..B. and
B,,....B. > Cy,...,.C

340

3. Transitive Closure

A, ..., A =2 B,..B. and
B,,...B, 2 C,,...,C,
implies
A,...A, 2 C,..,C

341

Finding Functional Dependencies

Example:
Products
Name Color | Category Dep Price
Gizmo |Green |Gadget Toys 49
Widget | Black Gadget Toys 59
Gizmo |Green |Whatsit Garden |99

Provided FDs:

1. {Name} = {Color}
2. {Category} =2 {Department}
3. {Color, Category} =2 {Price}

Which / how many other FDs hold?

342

Finding Functional Dependencies

Example:
Inferred FDs: Provided FDs:
1 {Name} > (Color
4. {Name, Category}-> {Name} ? 2. {Category} = {Dept.}
5. {Name, Category} -> {Color} ?P {-CO;OE Category} 2
rice

6. {Name, Category} -> {Category}

7. {Name, Category -> {Color, Category}

8. {Name, Category} -> {Price}

Which / how many other FDs hold?

343

Finding Functional Dependencies

Example:
Inferred FDs: Provided FDs:
1 {Name] > (Color)
4. {Name, Category}-> {Name} Trivial 2. {Category} = {Dept.}
5. {Name, Category} -> {Color} ? ?P {'CO;OE Category} =2
rice

6. {Name, Category} -> {Category}

?
7. {Name, Category -> {Color, Category} 7
8. {Name, Category} -> {Price} ?

Which / how many other FDs hold?

344

Finding Functional Dependencies

Example:
Inferred FDs: Provided FDs:
1 {Name] > (Color)
4. {Name, Category}-> {Name} Trivial 2. {Category} = {Dept.}
5. {Name, Category} -> {Color} Transitive (4 -> 1) 3. {Color, Category} =2
{Price}
6. {Name, Category} -> {Category} ?

7. {Name, Category -> {Color, Category} 7

8. {Name, Category} -> {Price} ?

Which / how many other FDs hold?

345

Finding Functional Dependencies

Example:
Inferred FDs: Provided FDs:
1 {Name) > (Color]
4. {Name, Category}-> {Name} Trivial 2. {Category} = {Dept.}
5. {Name, Category} -> {Color} Transitive (4 -> 1) 3. {_CO|O'3 Category} =2
6. {Name, Category} -> {Category} Trivial Price)

7. {Name, Category -> {Color, Category} 7

8. {Name, Category} -> {Price} ?

Which / how many other FDs hold?

346

Finding Functional Dependencies

Example:
Inferred FDs: Provided FDs:
1 {Name) > (Color]
4. {Name, Category}-> {Name} Trivial 2. {Category} = {Dept.}
5. {Name, Category} -> {Color} Transitive (4 -> 1) 3. {_CO|O'3 Category} =2
6. {Name, Category} -> {Category} Trivial Price)

7. {Name, Category -> {Color, Category} Split/combine (5 + 6)

8. {Name, Category} -> {Price} ?

Which / how many other FDs hold?

347

Finding Functional Dependencies

Can we find an algorithmic way to do this?

Example:
Inferred FDs: Provided FDs:
1 {Name) > (Color]
4. {Name, Category}-> {Name} Trivial 2. {Category} = {Dept.}
5. {Name, Category} -> {Color} Transitive (4 -> 1) 3. {_CO|O'3 Category} =
6. {Name, Category} -> {Category} Trivial Price)

7. {Name, Category -> {Color, Category} Split/combine (5 + 6)

8. {Name, Category} -> {Price} Transitive (7 -> 3)

Which / how many other FDs hold?

348

Closure of a set of Attributes

Given a set of attributes A4, ..., A, and a set of FDs F:
Then the closure, {A,, ..., A} is the set of attributes B s.t. {A,, ..., A.} 2> B

Example: F= |{name} > {color}
{category} = {department}
{color, category} = {pricey}

349

Closure of a set of Attributes

Given a set of attributes A4, ..., A, and a set of FDs F:
Then the closure, {A,, ..., A} is the set of attributes B s.t. {A,, ..., A.} 2> B

Example: F= |{name} > {color}
{category} = {department}
{color, category} = {pricey}

Example {name}* = ?
Closures: iname, category}* = ?

{color}t = 7

350

Closure of a set of Attributes

Given a set of attributes A4, ..., A, and a set of FDs F:
Then the closure, {A,, ..., A} is the set of attributes B s.t. {A,, ..., A.} 2> B

Example: F= |{name} > {color}
{category} = {department}
{color, category} = {pricey}

Example {name}* = {name, color}
Closures: iname, category}* = ?

{color}t = 7

351

Closure of a set of Attributes

Given a set of attributes A4, ..., A, and a set of FDs F:
Then the closure, {A,, ..., A} is the set of attributes B s.t. {A,, ..., A.} 2> B

Example: F= |{name} > {color}
{category} = {department}
{color, category} = {pricey}

Example {name}* = {name, color}
Closures: iname, category}* =
{name, category, color, ...}
{color}* = 7

352

Closure of a set of Attributes

Given a set of attributes A4, ..., A, and a set of FDs F:
Then the closure, {A,, ..., A} is the set of attributes B s.t. {A,, ..., A.} 2> B

Example: F= |{name} > {color}
{category} = {department}
{color, category} = {pricey}

Example {name}* = {name, color}
Closures: ihame, category}* =

{name, category, color, dept, price}
{color}+ =7

353

Closure of a set of Attributes

Given a set of attributes A4, ..., A, and a set of FDs F:
Then the closure, {A,, ..., A} is the set of attributes B s.t. {A,, ..., A.} 2> B

Example: F= |{name} > {color}
{category} = {department}
{color, category} = {pricey}

Example {name}* = {name, color}
Closures: iname, category}* =

{name, category, color, dept, price}
{color}* = {color}

354

Closure Algorithm

Start with X ={A,, ..., A} and set of FDs F.
Repeat until X doesn’t change; do:
if {B,, ..., B,,} =2 Cisentailed by F
and{B,, ..., B _} € X
then add Cto X.

Return X as X*
355

Closure Algorithm

Start with X=1{A,, ..., A}, FDs F.

Repeat until X doesn’t change; do:

if {B,,...,B.}=2 CisinFand{B,,
., BLTEX:
then add C to X.
Return X as X*

{name, category}+* =
{name, category}

{name} > {color}
{category} => {dept}

{color, category} =
{price}

356

Closure Algorithm

Start with X=1{A,, ..., A}, FDs F.

Repeat until X doesn’t change; do:

if {B,,...,B.}=2 CisinFand{B,,
., BLTEX:
then add C to X.
Return X as X*

{name, category}* =
{name, category, color}

{name} > {color}
{category} => {dept}

{color, category} =
{price}

357

Closure Algorithm

Start with X=1{A,, ..., A}, FDs F.

., BLTEX:
then add Cto X.
Return X as X*

Repeat until X doesn’t change; do:

if {B, ..., B} =2 CisinFand {B,,

{name} > {color}
{category} > {dept}

{color, category} =
{price}

{name, category}+* =
{name, category, color, dept}

358

Closure Algorithm

Start with X=1{A,, ..., A}, FDs F.
Repeat until X doesn’t change; do:
if {B,,...,B.}=2 CisinFand{B,,
., BLTEX:
then add C to X.
Return X as X*

{name} > {color} Jelete =‘///
e ~
{category} => {dept}

{name, category}* =
{name, category, color, dept,

{color, category} = orice}

{price}

359

Example

R(A,B,C,D,E,F)

Compute {A,B}f = {A, B,

Compute {A, F}* ={A, F

{A,B} > {C}
{A,D} > {E}
{B} > {D}

{A,F} > {B}

360

Example

R(A,B,C,D,E,F)

{A,B} > {C}
{A,D} > {E}
{B} > {D}

{A,F} > {B}

Compute {A,B}* ={A, B,C, D

Compute {A, F}* ={A, F

361

Example

R(A,B,C,D,E,F)

{A,B} > {C}
{A,D} > {E}
{B} > {D}

{A,F} > {B}

Compute {A,B}f ={A, B, C, D, E}

Compute {A, F}* ={A, F

362

Example

R(A,B,C,D,E,F)

{A,B} > {C}
{A,D} > {E}
{B} > {D}

{A,F} > {B}

Compute {A,B}f ={A, B, C, D, E}

Compute {A, F}* ={A, B, F

363

Example

R(A,B,C,D,E,F)

{A,B} > {C}
{A,D} > {E}
{B} > {D}

{A,F} > {B}

Compute {A,B}f ={A, B, C, D, E}

Compute {A, F}*={A, B, C, F

364

Example

R(A,B,C,D,E,F)

{A,B} > {C}
{A,D} > {E}
{B} > {D}

{A,F} > {B}

Compute {A,B}f ={A, B, C, D, E}

Compute {A, F}*={A, B, C, D, E, F}

365

3. Closures, Superkeys,
and (Candidate) Keys

