
274

L13:	Normalization

CS3200 Database	design	(sp18 s2)
https://course.ccs.neu.edu/cs3200sp18s2/
2/26/2018

275

Announcements!

• Keep	bringing	your	name	plates	J
• Page	Numbers	now	bigger	(may	change	slightly)
• Exam	1	discussion:	solutions	posted	on	BB,	questions	on	grading:	Piazza,	send	
to	instructors	only

• Project	part	1	discussion	likely	Thursday	in	class
• Outline
- Continue	with	ER	modeling	and	Normalization
- Transactions	after	Spring	Break

276

Practice

277

Exercise	1

• Create	a	relational	schema	to	represent	the	following	E-R	Diagram:	

Product
Product_ID
Product_Name
{Price	History
(Effective_Date,
Price)	}

278

Exercise	1

• Create	a	relational	schema	to	represent	the	following	E-R	Diagram:	

Product
Product_ID
Product_Name
{Price	History
(Effective_Date,
Price)	}

Product_ID Product_Name
Product

Product_ID Effective_Date Price
Price_History

279

Exercise	2

• Create	a	relational	schema	to	represent	the	following	E-R	Diagram:	

Product
Product_ID
Product_Name
StandardPrice
({customer,
Price})

Product_ID Product_Name
Product

280

Exercise	2

• Create	a	relational	schema	to	represent	the	following	E-R	Diagram:	

Product
Product_ID
Product_Name
StandardPrice
({customer,
Price})

Product_ID Product_Name Standard_Price
Product

Product_ID customer Price
SpecialPrice

CustomerName ...
Customer

281

Exercise	3

Course
Course_ID
Semester_Taught
Title

Instructor
Instructor_Name
Location

Registers
For

Student
Student_ID
Name
Campus_Address
Major

Grade

Teaches

• Create	a	relational	schema	
to	represent	this	E-R	Diagram:	

282

Exercise	3

Course
Course_ID
Semester_Taught
Title

Instructor
Instructor_Name
Location

Registers
For

Student
Student_ID
Name
Campus_Address
Major

Grade

Teaches

283

Exercise	3:	Solution

Student_ID Name Campus_Address Major

Student

Course_Registration

Course
Course_ID Semester_Taught Title @Instructor_Name

Instructor
Instructor_Name Location

@Student_ID @Course_ID @Semester_Taught Grade

Course
Course_ID
Semester_Taught
Title

Instructor
Instructor_Name
Location

Registers
For

Student
Student_ID
Name
Campus_Address
Major

Grade

Teaches

don't	forget:	
"not	null"	constraint

284

Example:	Pine	Valley	Furniture	Company

Customer
Customer_ID
Customer_Name
Address
City
State
Zip

Order
Order_ID
Order_Date

Product
Product_ID
Product_Description
Product_Finish
Standard_Price
On_Hand

Order_Line
Quantity

Submits

285

Referential	integrity	
constraints	are	drawn	via	
arrows	from	dependent	
(FK)	to	parent	table	(PK)

Example:	Pine	Valley	Furniture	
Referential	Integrity	Constraints

Source:	Compare	with	Fig	4-30:	Hoffer,	Ramesh,	Topi,	"Modern	database	management,"	10th ed,	2010.

PKs FKs
(implements	1:N	relationship	
between	customer	and	order)

Combined,	these	are	
a	composite	primary	
key (uniquely	
identifies	the	order	
line)…individually	
they	are	foreign	keys
(together	implement	
M:N	relationship	
between	order	and	
product)

286

1. Normal forms
and

Functional Dependencies

287

Design	Theory

• Design	theory	is	about	how	to	represent	your	data	to	avoid	anomalies.	

• It	is	a	mostly	mechanical	process
- Tools	can	carry	out	routine	portions

• We	have	a	notebook	implementing	all	algorithms!
• We’ll	play	with	it	in	the	activities!

288

Data	Normalization

• Data	normalization	is	the	process	of	decomposing	relations	with	
anomalies	to	produce	smaller,	well-structured	relations

• Goals	of	normalization	include:
- Minimize	data	redundancy
- Simplifying	the	enforcement	of	referential	integrity	constraints
- Simplify	data	maintenance	(inserts,	updates,	deletes)
- Improve	representation	model	to	match	"the	real	world"

289

Well-Structured	Relations
• A	well-structured	relation contains	minimal	data	redundancy	and	allows	users	
to	insert,	delete,	and	update	rows	without	causing	data	inconsistencies

• Anomalies are	errors	or	inconsistencies	that	may	result	when	a	user	attempts	
to	update	a	table	that	contains	redundant	data.

• Three	types	of	anomalies:
- Insertion	Anomaly – adding	new	rows	forces	user	to	create	duplicate	data
- Deletion	Anomaly – deleting	rows	may	cause	a	loss	of	data	that	would	be	needed	for	

other	future	rows
- Modification	Anomaly – changing	data	in	a	row	forces	changes	to	other	rows	because	of	

duplication

• General	rule	of	thumb:	a	table	should	not	pertain	to	more	than	one	entity	
type

290

DB	designs	based	on	
FDs	(functional	
dependencies),	
intended	to	prevent	
data	anomalies

Normal	Forms

• 1st	Normal	Form	(1NF)	=	All	tables	are	flat

• 2nd	Normal	Form	=	not	used	anymore
- no	more	"partial	FDs"	(those	are	part	of	the	"bad"	FDs)

• 3rd	Normal	Form	(3NF)
- no	more	transitive	FDs	(also	"bad")

• Boyce-Codd Normal	Form	(BCNF)
- every	determiniant is	a	candidate	key

• 4th:	any	multivalued	dependencies	have	been	removed	(see	textbook)
• 5th:	any	remaining	anomalies	have	been	removed	(see	text	book)

Our	focus	
next

Normal	Form:	a	state	of	a	relation	
that	results	from	applying	simple	
rules	regarding	FDs	to	that	relation	

291

1st	Normal	Form	(1NF)

Violates	1NF.	

Student Courses
Mary {CS3200,	CS4240}
Joe {CS3200,	CS4240}
… …

292

1st	Normal	Form	(1NF)

Student Courses
Mary {CS3200,	CS4240}
Joe {CS3200,	CS4240}
… …

Violates	1NF.	

1NF	Constraint:	Types	must	be	atomic!

Student Courses
Mary CS3200
Mary CS4240
Joe CS3200
Joe CS4240

In	1st NF

293

Student Course Room
Mary CS3200 WVF20
Joe CS3200 WVF20
Sam CS3200 WVF20
..

Constraints	Prevent	(some)	Anomalies	in	the	Data

If	every	course	is	in	
only	one	room,	
contains	redundant
information!

A	poorly	designed	database	causes	anomalies:

294

Student Course Room
Mary CS3200 WVF20
Joe CS3200 B12
Sam CS3200 WVF20
..

Constraints	Prevent	(some)	Anomalies	in	the	Data

If	we	update	the	
room	number	for	
one	tuple,	we	get	
inconsistent	data	=	
an	update anomaly

A	poorly	designed	database	causes	anomalies:

295

Student Course Room
...

Constraints	Prevent	(some)	Anomalies	in	the	Data

If	everyone	drops	the	class,	we	lose	what	
room	the	class	is	in!	=	a	delete anomaly

A	poorly	designed	database	causes	anomalies:

296

Constraints	Prevent	(some)	Anomalies	in	the	Data

Student Course Room
Mary CS3200 WVF20
Joe CS3200 WVF20
Sam CS3200 WVF20
..

Similarly,	we	can’t	
reserve	a	room	
without	students	
=	an	insert	
anomaly

A	poorly	designed	database	causes	anomalies:

… CS4240 B12

297

Constraints	Prevent	(some)	Anomalies	in	the	Data

Student Course
Mary CS3200
Joe CS3200
Sam CS3200
.. ..

Course Room
CS3200 WVF20
CS4240 B12

Next:	develop	theory	to	understand	why	this	design	may	
be	better	and how	to	find	this	decomposition…

Is	this	form	better?

• Redundancy?	
• Update	anomaly?	
• Delete	anomaly?
• Insert	anomaly?

298

299

Is	This	Table	Well	Structured?

• Does	it	contain	anomalies?
- Insertion:	if	an	employee	takes	a	new	class	we	need	to	add	duplicate	data	(Name,	Dept_Name,	Salary)
- Deletion:	If	we	remove	employee	140,	we	lose	information	about	the	existence	of	a	Tax	Acc class
- Modification:	Giving	a	salary	increase	to	employee	100	forces	us	to	update	multiple	records

• Why	do	these	anomalies	exist?	
- Because	there	are	two	themes	(entity	types)	in	one	relation.	This	results	in	duplication,	and	an	

unnecessary	dependency	between	the	entities

300

Normalizing	Previous	Employee/Class	Table

Course_Completion

Emp_ID Course_ID Date_Completed

100 1 6/19/2005

100 2 10/7/2004

140 3 12/8/2004

110 1 1/12/2004

110 4 4/22/2003

150 1 6/19/2005

150 5 8/12/2002

Employee

Emp_ID Name Dept_Name Salary

100 Margaret Simpson Marketing 48000

140 Alan Beeton Accounting 52000

110 Chris Lucero Info Sys 43000

190 Lorenzo Davis Finance 55000

150 Susan Martin Marketing 42000

Course

Course_ID Course_Title

1 SPSS

2 Surveys

3 Tax Acc

4 C++

5 Java

This	seems	more	complicated

Why	might	this	approach	be	
superior	to	the	previous	one?

301

Functional	Dependencies	("FDs")

Definition:

If	two	tuples agree	on	the	attributes	

then	they	must	also	agree	on	the	attributes

Formally:		

A1,	A2,	…,	An à B1,	B2,	…,	Bm

A1,	A2,	…,	An

B1,	B2,	…,	Bm

302

Functional	Dependencies	("FDs")

A->B	means	that	
“whenever	two	tuples	agree	on	A	then	they	agree	on	B.”

Def:	Let	A,B	be	sets of	attributes
We	write	A	à B	or	say	A	functionally	determines	
B	if,	for	any	tuples	t1 and	t2:	

t1[A]	=	t2[A]	implies	t1[B]	=	t2[B]

and	we	call	A	à B	a	functional	dependency

A	(determinant)	àB	(dependent)

303

A	Picture	Of	FDs

A1 … Am B1 … Bn

Defn (again):
Given	attribute	sets	A={A1,…,Am} and	
B	=	{B1,…Bn}	in	R,

304

A1 … Am B1 … Bn

A	Picture	Of	FDs

ti

tj

Defn (again):
Given	attribute	sets	A={A1,…,Am} and	
B	=	{B1,…Bn}	in	R,

The	functional	dependency Aà B	on	
R	holds	if	for	any	ti,tj in	R:

305

A	Picture	Of	FDs

Defn (again):
Given	attribute	sets	A={A1,…,Am} and	
B	=	{B1,…Bn}	in	R,

The	functional	dependency Aà B	on	
R	holds	if	for	any	ti,tj in	R:

if ti[A1]	=	tj[A1]	AND	ti[A2]=tj[A2]	AND	
…	AND	ti[Am]	=	tj[Am]

A1 … Am B1 … Bn

ti

tj

If ti,tj agree here..

306

A	Picture	Of	FDs

Defn (again):
Given	attribute	sets	A={A1,…,Am} and	
B	=	{B1,…Bn}	in	R,

The	functional	dependency Aà B	on	
R	holds	if	for	any	ti,tj in	R:

if ti[A1]	=	tj[A1]	AND	ti[A2]=tj[A2]	AND	
…	AND	ti[Am]	=	tj[Am]

then ti[B1]	=	tj[B1]	AND	ti[B2]=tj[B2]	
AND	…	AND	ti[Bn]	=	tj[Bn]

A1 … Am B1 … Bn

ti

tj

If ti,tj agree here.. …they also agree here!

307

FDs	for	Relational	Schema	Design

• High-level	idea:	why	do	we	care	about	FDs?

- Start	with	some	relational	schema

- Find	out	its	functional	dependencies	(FDs)

- Use	these	to	design	a	better	schema
• One	which	minimizes	the	possibility	of	anomalies

308

Functional	Dependencies	as	Constraints

Student Course Room
Mary CS3200 WVF20
Joe CS3200 WVF20
Sam CS3200 WVF20
..

Note:	The	FD	{Course}	
->	{Room}	holds	on	this	
instance

A	functional	dependency	is	a	form	
of	constraint

• Holds on	some	instances	(but	not	
others)	– can	check	whether	there	
are	violations

• Part	of	the	schema,	helps	define	a	
valid instance

Recall:	an	instance of	a	schema	is	a	multiset of	
tuples	conforming	to	that	schema,	i.e.	a	table

309

Functional	Dependencies	as	Constraints

Student Course Room
Mary CS3200 WVF20
Joe CS3200 WVF20
Sam CS3200 WVF20
..

However,	cannot	prove	
that	the	FD	{Course}	->	
{Room}	is	part	of	the	
schema

Note	that:
• You	can	check	if	an	FD	is	

violated by	examining	a	single	
instance;

• However,	you	cannot	prove
that	an	FD	is	part	of	the	
schema	by	examining	a	single	
instance.	
• This	would	require	checking	

every	valid	instance

310

More	Examples

An	FD	is	a	constraint	which	holds,	or	does	not	hold on	
an	instance:

EmpID Name Phone Position
E0045 Smith 1234 Clerk
E3542 Mike 9876 Salesrep
E1111 Smith 9876 Salesrep
E9999 Mary 1234 Lawyer

311

More	Examples

{Position} à {Phone}

EmpID Name Phone Position
E0045 Smith 1234 Clerk
E3542 Mike 9876 ¬ Salesrep
E1111 Smith 9876 ¬ Salesrep
E9999 Mary 1234 Lawyer

312

More	Examples

EmpID Name Phone Position
E0045 Smith 1234 ® Clerk
E3542 Mike 9876 Salesrep
E1111 Smith 9876 Salesrep
E9999 Mary 1234 ® Lawyer

but not {Phone} à {Position}

313

Practice

A B C D E

1 2 4 3 6
3 2 5 1 8
1 4 4 5 7
1 2 4 3 6
3 2 5 1 8

Find	at	least	three FDs	which	
are	violated	on	this	instance:

{ } à { }
{ } à { }
{ } à { }

314

2. Finding FDs

315

What	you	will	learn	about	next

• “Good”	vs.	“Bad”	FDs:	Intuition

• Finding	FDs

• Closures

• PRACTICE:	Compute	the	closures

316

1NF

• First	normal	form:	A	relation	that	has	a	primary	key	and	in	which	
there	are	no	repeating	groups
- No	multivalued	attributes
- Every	attribute	value	is	atomic	(single	fact	in	each	table	cell)

• All	relations	are	in	1NF

• Normalization	steps	(from	tabular	view	of	data):
- Goal:	create	a	relation	from	the	tabular	view
- Action:	remove	repeating	groups
- Action:	select	the	primary	key

317

Example:	Convert	To	1NF

• Normalization	steps	(from	tabular	view	of	data):
- Goal:	create	a	relation	from	the	tabular	view
- Action:	remove	repeating	groups
- Action:	select	the	primary	key

318

Action:	Remove	Repeating	Groups

• Is	the	data	view	a	relation	now?
- Answer:	yes

• Is	it	well-structured?
- Answer:	no

319

What	are	the	anomalies	in	this	table?

• Insertion:	If	new	product	is	ordered	for	order	1007	of	existing	customer,	customer	data	
must	be	re-entered,	causing	duplication

• Deletion:	If	we	delete	the	Dining	Table	from	Order	1006,	we	lose	information	concerning	
this	item's	finish	and	price	

• Update:	Changing	the	price	of	product	ID	4	requires	update	in	several	records
• Why	do	these	anomalies	exist?	Because	there	are	multiple	themes	(entity	types)	in	one	

relation.	->	duplication,	and	unnecessary	dependency	between	entities

320

Action:	Select	A	Primary	Key

• Identify	FDs	and	CKs (candidate	keys	=	minimal	superkeys)
• Four	determinants	and	functional	dependencies

- Order_ID →	Order_Date,	Customer_ID,	Customer_Name,	Customer_Address
- Customer_ID →	Customer_Name,	Customer_Address
- Product_ID →	Product_Description,	Product_Finish,	Unit_Price
- Order_ID,	Product_ID →	Ordered_Quantity

• Select	a	PK from	CKs
- (Order_ID,	Product_ID)

321

Next	Step:	Convert	To	2NF

• 2NF:	A	relation	in	2NF in	which	every	non-key	attribute	is	fully	
functionally	dependent	on	the	primary	key

• Partial	FD:	A	FD	in	which	one	or	more	nonkey attributes	are	
functionally	dependent	on	part	(but	not	all)	of	the	PK

322

Getting	A	Relation	To	2NF

• Create	a	new	relation	for	each	primary	key	attribute	that	is	a	
determinant	in	a	partial	dependency
- That	attribute	is	the	primary	key	in	the	new	relation

• Move	the	nonkey	attributes	that	are	dependent	on	this	primary	key	
attribute(s)	from	the	old	relation	to	the	new	relation

• Exercise:	Convert	1NF	relation	to	2NF

323

A	1NF	Relation	Is	In	2NF	if

• The	PK	consists	of	only	one	attribute.	There	cannot	be	a	partial	dependency	in	
such	a	relation

• (or)	no	nonkey	attributes	exist	in	the	relation	(thus	all	attributes	in	the	
relation	are	components	of	the	PK).	There	are	no	FDs	in	such	a	relation

• (or)	every	nonkey	attribute	is	functionally	dependent	on	the	full	set	of	PK	
attributes.

324

3NF

• 3NF:	A	relation	that	is	in	2NF	and	has	no	transitive	dependencies	present
• Transitive	dependency:	An	FD	between	two	(or	more)	nonkey	attributes
- FD	between	the	PK	and	one	or	more	nonkey	attributes	that	are	dependent	on	the	PK	via	

another	nonkey	attribute	

• Transitive	dependency	example:

325

Removing	Transitive	Dependencies

• For	each	nonkey	attribute(s)	that	is	a	determinant	in	a	relation,	create	a	new	
relation.
- That	attribute	becomes	the	PK	of	the	new	relation

• Move	all	of	the	attributes	that	are	functionally	dependent	on	the	attribute	
from	the	old	to	the	new	relation

• Leave	the	attribute	(which	serves	as	a	PK	in	the	new	relation	in	the	old	
relation	to	serve	as	a	FK	that	allows	us	to	associate	the	two	relations

• Exercise:	Convert	relation	below	to	3NF

326

• Original	example	in	2NF:

• Example	converted	to	3NF:

Third	Normal	Form

327

Full	Example:	From	1NF	to	3NF
Before	(3NF):

After	(3NF):

328

Normalization	Summary

• Data	normalization	is	the	process	of	decomposing	relations	with	
anomalies	to	produce	smaller,	well-structured	relations

• Goals	of	normalization	include:
- Minimize	data	redundancy
- Simplifying	the	enforcement	of	referential	integrity	constraints
- Simplify	data	maintenance	(inserts,	updates,	deletes)
- Improve	representation	model	to	match	"the	real	world"	

329

“Good”	vs.	“Bad”	FDs

We can start to develop a notion of good vs. bad FDs:

EmpID Name Phone Position
E0045 Smith 1234 Clerk
E3542 Mike 9876 Salesrep
E1111 Smith 9876 Salesrep
E9999 Mary 1234 Lawyer

Intuitively:

EmpID ->	Name,	Phone,	
Position	is	“good	FD”
• Minimal	redundancy,	

less	possibility	of	
anomalies

330

“Good”	vs.	“Bad”	FDs

We can start to develop a notion of good vs. bad FDs:

EmpID Name Phone Position
E0045 Smith 1234 Clerk
E3542 Mike 9876 Salesrep
E1111 Smith 9876 Salesrep
E9999 Mary 1234 Lawyer

Intuitively:

EmpID ->	Name,	Phone,	
Position	is	“good	FD”

But	Position	->	Phone	is	a	
“bad	FD”
• Redundancy!		

Possibility	of	data	
anomalies

331

Student Course Room
Mary CS3200 WVF20
Joe CS3200 WVF20
Sam CS3200 WVF20
..

Given	a	set	of	FDs	(from	user)	our	goal	is	to:
1. Find	all	FDs,	and	
2. Eliminate	the	“Bad	Ones".

Returning	to	our	original	example…	
can	you	see	how	the	“bad	FD”	
{Course}	->	{Room}	could	lead	to	an:

• Update	Anomaly
• Insert	Anomaly
• Delete	Anomaly
• …

“Good”	vs.	“Bad”	FDs

332

FDs	for	Relational	Schema	Design

• High-level	idea:	why	do	we	care	about	FDs?

1. Start	with	some	relational	schema

2. Find	out	its	functional	dependencies	(FDs)

3. Use	these	to	design	a	better	schema
• One	which	minimizes	possibility	of	anomalies

This	part	can	be	tricky!

333

Finding	Functional	Dependencies

• There	can	be	a	very	large	number	of	FDs…
- How	to	find	them	all	efficiently?

• We	can’t	necessarily	show	that	any	FD	will	hold	on	all	instances…
- How	to	do	this?

We	will	start	with	this	problem:
Given	a	set	of	FDs,	F,	what	other	FDs	must	hold?

334

Finding	Functional	Dependencies

• Equivalent	to	asking:	Given	a	set	of	FDs,	F	=	{f1,…fn},	does	an	FD	g	hold?
- Inference	problem:	How	do	we	decide?

1.	{Name}	à {Color}
2.	{Category}	à {Department}
3.	{Color,	Category}	à {Price}

Name Color Category Dep Price
Gizmo Green Gadget Toys 49
Widget Black Gadget Toys 59
Gizmo Green Whatsit Garden 99

Which	/	how	many	other	FDs	do?!?	

Provided FDs:Products

Given the provided FDs, we can see that {Name, Category} à
{Price} must also hold on any instance…

Example:

335

Finding	Functional	Dependencies

• Equivalent	to	asking:	Given	a	set	of	FDs,	F	=	{f1,…fn},	does	an	FD	g	hold?
- Inference	problem:	How	do	we	decide?

Answer:	Three	simple	rules	called	Armstrong’s	Rules.
1. Split/Combine,
2. Reduction,	and
3. Transitivity…	ideas	by	picture

336

1.	Split/Combine

A1 … Am B1 … Bn

A1,	…,	Am à B1,…,Bn

337

1.	Split/Combine

A1 … Am B1 … Bn

A1,	…,	Am à B1,…,Bn

…	is	equivalent	to	the	following	n FDs…

A1,…,Am à Bi for	i=1,…,n

338

1.	Split/Combine

A1 … Am B1 … Bn

A1,	…,	Am à B1,…,Bn

…	is	equivalent	to	…

And	vice-versa,	A1,…,Am à Bi for	i=1,…,n

339

2.	Reduction	(Trivial)

A1 … Am

A1,…,Am à Aj for	any	j=1,…,m

340

3.	Transitive	Closure

A1 … Am B1 … Bn C1 … Ck

A1,	…,	Am à B1,…,Bn and
B1,…,Bn à C1,…,Ck

341

3.	Transitive	Closure

A1 … Am B1 … Bn C1 … Ck

A1,	…,	Am à B1,…,Bn and
B1,…,Bn à C1,…,Ck

implies
A1,…,Am à C1,…,Ck

342

Finding	Functional	Dependencies

1.	{Name}	à {Color}
2.	{Category}	à {Department}
3.	{Color,	Category}	à {Price}

Name Color Category Dep Price
Gizmo Green Gadget Toys 49
Widget Black Gadget Toys 59
Gizmo Green Whatsit Garden 99

Which	/	how	many	other	FDs	hold?

Provided FDs:Products

Example:

343

Finding	Functional	Dependencies

1.	{Name}	à {Color}
2.	{Category}	à {Dept.}
3.	{Color,	Category}	à
{Price}

Which	/	how	many	other	FDs	hold?

Provided FDs:Inferred FDs:

Example:

Inferred FD Rule	used

4. {Name,	Category}	->	{Name} ?
5.	{Name,	Category}	->	{Color} ?
6.	{Name,	Category} ->	{Category} ?
7.	{Name,	Category ->	{Color,	Category} ?
8.	{Name,	Category}	->	{Price} ?

344

Finding	Functional	Dependencies

1.	{Name}	à {Color}
2.	{Category}	à {Dept.}
3.	{Color,	Category}	à
{Price}

Which	/	how	many	other	FDs	hold?

Provided FDs:Inferred FDs:

Example:

Inferred FD Rule	used

4. {Name,	Category}	->	{Name} Trivial
5.	{Name,	Category}	->	{Color} ?
6.	{Name,	Category} ->	{Category} ?
7.	{Name,	Category ->	{Color,	Category} ?
8.	{Name,	Category}	->	{Price} ?

345

Finding	Functional	Dependencies

1.	{Name}	à {Color}
2.	{Category}	à {Dept.}
3.	{Color,	Category}	à
{Price}

Which	/	how	many	other	FDs	hold?

Provided FDs:Inferred FDs:

Example:

Inferred FD Rule	used

4. {Name,	Category}	->	{Name} Trivial
5.	{Name,	Category}	->	{Color} Transitive (4	->	1)
6.	{Name,	Category} ->	{Category} ?
7.	{Name,	Category ->	{Color,	Category} ?
8.	{Name,	Category}	->	{Price} ?

346

Finding	Functional	Dependencies

1.	{Name}	à {Color}
2.	{Category}	à {Dept.}
3.	{Color,	Category}	à
{Price}

Which	/	how	many	other	FDs	hold?

Provided FDs:Inferred FDs:

Example:

Inferred FD Rule	used

4. {Name,	Category}	->	{Name} Trivial
5.	{Name,	Category}	->	{Color} Transitive (4	->	1)
6.	{Name,	Category} ->	{Category} Trivial
7.	{Name,	Category ->	{Color,	Category} ?
8.	{Name,	Category}	->	{Price} ?

347

Finding	Functional	Dependencies

1.	{Name}	à {Color}
2.	{Category}	à {Dept.}
3.	{Color,	Category}	à
{Price}

Which	/	how	many	other	FDs	hold?

Provided FDs:Inferred FDs:

Example:

Inferred FD Rule	used

4. {Name,	Category}	->	{Name} Trivial
5.	{Name,	Category}	->	{Color} Transitive (4	->	1)
6.	{Name,	Category} ->	{Category} Trivial
7.	{Name,	Category ->	{Color,	Category} Split/combine (5	+	6)
8.	{Name,	Category}	->	{Price} ?

348

Finding	Functional	Dependencies

1.	{Name}	à {Color}
2.	{Category}	à {Dept.}
3.	{Color,	Category}	à
{Price}

Which	/	how	many	other	FDs	hold?

Provided FDs:Inferred FDs:

Example:

Inferred FD Rule	used

4. {Name,	Category}	->	{Name} Trivial
5.	{Name,	Category}	->	{Color} Transitive (4	->	1)
6.	{Name,	Category} ->	{Category} Trivial
7.	{Name,	Category ->	{Color,	Category} Split/combine (5	+	6)
8.	{Name,	Category}	->	{Price} Transitive	(7	-> 3)

Can	we	find	an	algorithmic	way	to	do	this?

349

Closure	of	a	set	of	Attributes

Given a	set	of	attributes		A1,	…,	An and	a	set	of	FDs	F:
Then	the	closure,	{A1,	…,	An}+ is	the	set	of	attributes	B s.t. {A1,	…,	An}	à B

{name} à {color}
{category} à {department}
{color, category} à {price}

Example: F	=

350

Closure	of	a	set	of	Attributes

Given a	set	of	attributes		A1,	…,	An and	a	set	of	FDs	F:
Then	the	closure,	{A1,	…,	An}+ is	the	set	of	attributes	B s.t. {A1,	…,	An}	à B

{name} à {color}
{category} à {department}
{color, category} à {price}

Example: F	=

Example	
Closures:

{name}+ = ?
{name, category}+ = ?

{color}+ = ?

351

Closure	of	a	set	of	Attributes

Given a	set	of	attributes		A1,	…,	An and	a	set	of	FDs	F:
Then	the	closure,	{A1,	…,	An}+ is	the	set	of	attributes	B s.t. {A1,	…,	An}	à B

{name} à {color}
{category} à {department}
{color, category} à {price}

Example: F	=

Example	
Closures:

{name}+ = {name, color}
{name, category}+ = ?

{color}+ = ?

352

Closure	of	a	set	of	Attributes

Given a	set	of	attributes		A1,	…,	An and	a	set	of	FDs	F:
Then	the	closure,	{A1,	…,	An}+ is	the	set	of	attributes	B s.t. {A1,	…,	An}	à B

{name} à {color}
{category} à {department}
{color, category} à {price}

Example: F	=

Example	
Closures:

{name}+ = {name, color}
{name, category}+ =

{name, category, color, ...}
{color}+ = ?

353

Closure	of	a	set	of	Attributes

Given a	set	of	attributes		A1,	…,	An and	a	set	of	FDs	F:
Then	the	closure,	{A1,	…,	An}+ is	the	set	of	attributes	B s.t. {A1,	…,	An}	à B

{name} à {color}
{category} à {department}
{color, category} à {price}

Example: F	=

Example	
Closures:

{name}+ = {name, color}
{name, category}+ =

{name, category, color, dept, price}
{color}+ = ?

354

Closure	of	a	set	of	Attributes

Given a	set	of	attributes		A1,	…,	An and	a	set	of	FDs	F:
Then	the	closure,	{A1,	…,	An}+ is	the	set	of	attributes	B s.t. {A1,	…,	An}	à B

{name} à {color}
{category} à {department}
{color, category} à {price}

Example: F	=

Example	
Closures:

{name}+ = {name, color}
{name, category}+ =

{name, category, color, dept, price}
{color}+ = {color}

355

Closure	Algorithm

Start	with	X	=	{A1,	…,	An}	and	set	of	FDs	F.

Repeat	until X	doesn’t	change;	do:

if {B1,	…,	Bm}	à C	is	entailed	by	F	

and {B1,	…,	Bm}	⊆ X

then add	C	to	X.

Return X	as	X+

356

Closure	Algorithm

Start	with	X	=	{A1,	…,	An},	FDs	F.
Repeat	until X	doesn’t	change;	do:
if {B1,	…,	Bm}	à C	is	in	F	and {B1,	

…,	Bm}	⊆ X:
then add	C	to	X.

Return X	as	X+

{name} à {color}

{category} à {dept}

{color, category} à
{price}

F	=

{name, category}+ =
{name, category}

357

Closure	Algorithm

{name} à {color}

{category} à {dept}

{color, category} à
{price}

F	=

{name, category}+ =
{name, category}

{name, category}+ ={name, category}+ =
{name, category, color}

Start	with	X	=	{A1,	…,	An},	FDs	F.
Repeat	until X	doesn’t	change;	do:
if {B1,	…,	Bm}	à C	is	in	F	and {B1,	

…,	Bm}	⊆ X:
then add	C	to	X.

Return X	as	X+

358

Closure	Algorithm

{name} à {color}

{category} à {dept}

{color, category} à
{price}

F	=

{name, category}+ =
{name, category}

{name, category}+ =
{name, category, color}

{name, category}+ ={name, category}+ =
{name, category, color, dept}

Start	with	X	=	{A1,	…,	An},	FDs	F.
Repeat	until X	doesn’t	change;	do:
if {B1,	…,	Bm}	à C	is	in	F	and {B1,	

…,	Bm}	⊆ X:
then add	C	to	X.

Return X	as	X+

359

Closure	Algorithm

F	=

{name, category}+ =
{name, category}

{name, category}+ =

{name, category}+ =
{name, category, color}

{name, category}+ =
{name, category, color, dept}{name} à {color}

{category} à {dept}

{color, category} à
{price}

{name, category}+ =
{name, category, color, dept,
price}

Start	with	X	=	{A1,	…,	An},	FDs	F.
Repeat	until X	doesn’t	change;	do:
if {B1,	…,	Bm}	à C	is	in	F	and {B1,	

…,	Bm}	⊆ X:
then add	C	to	X.

Return X	as	X+

360

Example

Compute	{A,B}+ =	{A,	B,																													}

Compute	{A,	F}+ =	{A,	F,																													}

R(A,B,C,D,E,F) {A,B} à {C}
{A,D} à {E}
{B} à {D}
{A,F} à {B}

361

Example

Compute	{A,B}+ =	{A,	B,	C,	D																					}

Compute	{A,	F}+ =	{A,	F,	 }

R(A,B,C,D,E,F) {A,B} à {C}
{A,D} à {E}
{B} à {D}
{A,F} à {B}

362

Example

Compute	{A,B}+ =	{A,	B,	C,	D,	E}

Compute	{A,	F}+ =	{A,	F,																													}

R(A,B,C,D,E,F) {A,B} à {C}
{A,D} à {E}
{B} à {D}
{A,F} à {B}

363

Example

Compute	{A,B}+ =	{A,	B,	C,	D,	E}

Compute	{A,	F}+ =	{A,	B,	F,																									}

R(A,B,C,D,E,F) {A,B} à {C}
{A,D} à {E}
{B} à {D}
{A,F} à {B}

364

Example

Compute	{A,B}+ =	{A,	B,	C,	D,	E}

Compute	{A,	F}+ =	{A,	B,	C,	F,																					}

R(A,B,C,D,E,F) {A,B} à {C}
{A,D} à {E}
{B} à {D}
{A,F} à {B}

365

Example

Compute	{A,B}+ =	{A,	B,	C,	D,	E}

Compute	{A,	F}+ =	{A,	B,	C,	D,	E,	F}

R(A,B,C,D,E,F) {A,B} à {C}
{A,D} à {E}
{B} à {D}
{A,F} à {B}

366

3. Closures, Superkeys,
and (Candidate) Keys

