
124

L04:	SQL

125

Announcements!

• Polls	on	Piazza.	Open	for	2	days
• Outline	today:	
- practicing	more	joins	and	specifying	key	and	FK	constraints
- nested	queries

• Next	time:	"witnesses"	(traditionally	students	find	this	topic	the	most	difficult)	

126

Queries	via	SQL	have	multiple	words:	If	you	master	this	
structure	you	know	50%	about	SQL	Queries

SELECT …
FROM …
WHERE …
GROUP BY …
HAVING …
ORDER BY …

• List	of	attributes to	be	included	in	final	result	(also	
called	projection!	("*"	selects	all	attributes)

• Indicates	the	table(s)	from	which	data	is	to	be	
retrieved

• Lists	a	comparison	predicate,	which	restricts	the	
rows	returned	by	the	query,	e.g.	“price	<	20”
or	different	join conditions

• Groups rows	that	have	one	more	common	values	
together	into	a	smaller	set	of	rows

• A	comparison	predicate used	to	restrict	the	rows	
resulting	from	the	GROUP	BY clause

• Identifies	which	columns are	used	to	sort	the	
resulting	data,	plus	the	direction each	column	is	
sorted	by	(ascending	or	descending)

Note1 :	SQL	is	generally		
case	insensitive,	e.g.	SELECT		

=	Select	=	select

Note2 :	The	words	always	
appear	in	this	order	– you	
CANNOT	reorder	them

127

How	to	specify	Foreign	Key	constraints

• Suppose	we	have	the	following	schema:

• And	we	want	to	impose	the	following	constraint:
- ‘Only	bona	fide	students	may	enroll	in	courses’	i.e.	a	student	must	appear	in	the	

Students	table	to	enroll	in	a	class

student_id alone	is	not	a	
key- what	is?

sid name gpa

101 Bob 3.2

123 Mary 3.8

student_id cid grade

123 564 A

123 537 A+

Students Enrolled

We	say	that	student_id is	a	foreign	key that	refers	to	Students

Students(sid: string, name: string, gpa: float)
Enrolled(student_id: string, cid: string, grade: string)

128

Declaring	Primary	Keys

CREATE TABLE Students(
sid CHAR(20) PRIMARY KEY,
name CHAR(20),
gpa REAL

)

Students(sid: string, name: string, gpa: float)
Enrolled(student_id: string, cid: string, grade: string)

129

Declaring	Primary	Keys

CREATE TABLE Students(
sid CHAR(20),
name CHAR(20),
gpa REAL,
PRIMARY KEY (sid)

)

Students(sid: string, name: string, gpa: float)
Enrolled(student_id: string, cid: string, grade: string)

130

Declaring	Foreign	Keys

CREATE TABLE Enrolled(
student_id CHAR(20),
cid CHAR(20),
grade CHAR(10),

)

Students(sid: string, name: string, gpa: float)
Enrolled(student_id: string, cid: string, grade: string)

PRIMARY KEY (student_id, cid),
FOREIGN KEY (student_id) REFERENCES Students(sid)

131

An	example	of	SQL	semantics

SELECT R.A
FROM R, S
WHERE R.A = S.B

A
1
3

B C
2 3
3 4
3 5

A B C
1 2 3
1 3 4
1 3 5
3 2 3
3 3 4
3 3 5

Cross	
Product

A B C
3 3 4
3 3 5

A
3
3

Apply	
ProjectionApply	

Selections	/	
Conditions

Output

132

Note	the	semantics	of	a	join
SELECT R.A
FROM R, S
WHERE R.A = S.B

Recall:	Cross	product	(A	X	B)	is	the	set	of	all	
unique	tuples	in	A,B

Ex:	{a,b,c}	X	{1,2}	
=	{(a,1),	(a,2),	(b,1),	(b,2),	(c,1),	(c,2)}

=	Filtering!

=	Returning	only	some attributes

Remembering	this	order	is	critical	to	understanding	the	
output	of	certain	queries	(see	later	on…)

1. Take	cross	product:
𝑋 = 𝑅×𝑆

2. Apply	selections	/	conditions:
𝑌 = 𝑟, 𝑠 ∈ 𝑋	 	𝑟. 𝐴 = 𝑟. 𝐵}

3. Apply	projections to	get	final	output:
𝑍 = (𝑦. 𝐴,)	𝑓𝑜𝑟	𝑦 ∈ 𝑌

133

Note:	we	say	“semantics”	not	“execution	order”

• The	preceding	slides	show	what	a	join	means

• Not	actually	how	the	DBMS	executes	it	under	the	covers

134

Practicing more Joins

135

Quiz	4

SELECT DISTINCT cName
FROM
WHERE

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

Q: Find all US companies that manufacture at least two
different products.

302

136

Quiz	4

Q: Find all US companies that manufacture at least two
different products.

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

SELECT DISTINCT cName
FROM Product P1, Product P2, Company
WHERE country = 'USA'

and P1.manufacturer = cName
and P2.manufacturer = cName
and P1.pName <> P2.pName <>

C

P1

P2

302

137

Quiz	4
PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

...

P1

Company
CName StockPrice Country

GizmoWorks 25 USA

...

Cname

GizmoWorks

PName Price Category Manufacturer

...

Powergizmo $29.99 Gadgets GizmoWorks

P2

SELECT DISTINCT cName
FROM Product P1, Product P2, Company
WHERE country = 'USA'

and P1.manufacturer = cName
and P2.manufacturer = cName
and P1.pName <> P2.pName

<>

302

138

Quiz	5

Q: Find all US companies that manufacture a product
below $20 and a product above $15.

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

SELECT DISTINCT cName
FROM Product as P1, Product as P2, Company
WHERE country = 'USA'

and P1.price < 20
and P2.price > 15
and P1.manufacturer = cName
and P2.manufacturer = cName

PName Price Category Manufacturer

Gizmo 19.99 Gadgets GizmoWorks

Powergizmo 29.99 Gadgets GizmoWorks

SingleTouch 149.99 Photography Canon

MultiTouch 203.99 Household Hitachi

Product

Company
CName StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

302

139

Quiz	5

Q: Find all US companies that manufacture a product
below $20 and a product above $15.

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

P.price > 15

C

P1

P2 P.price < 20

Note that we did not
specify any condition that
P1 and P2 need to be
distinct. An alternative
interpretation is "...and
another product above..."

302

140

Quiz	5
PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

...

P1

Company
CName StockPrice Country

GizmoWorks 25 USA

...

Cname

GizmoWorks

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

...

P2

SELECT DISTINCT cName
FROM Product as P1, Product as P2, Company
WHERE country = 'USA'

and P1.price < 20
and P2.price > 15
and P1.manufacturer = cName
and P2.manufacturer = cName

302

141

Quiz	6 302

?
SELECT country
FROM Product, Company
WHERE manufacturer = cName

and category = 'Gadgets'

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product Company
CName StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

Q:	Find	all	countries	that	have	companies	that	manufacture	
some	product	in	the	‘Gadgets’	category!

142

Quiz	6

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product Company
CName StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

302

Q:	Find	all	countries	that	have	companies	that	manufacture	
some	product	in	the	‘Gadgets’	category!

SELECT country
FROM Product, Company
WHERE manufacturer = cName

and category = 'Gadgets'

Country

USA

USA

Joins can introduce duplicates -> remember to use DISTINCT!

143

Nested queries
(Subqueries)

144

High-level	note	on	nested	queries

• We	can	do	nested	queries	because	SQL	is	compositional:

- Everything	(inputs	/	outputs)	is	represented	as	multisets- the	output	of	one	query	can	
thus	be	used	as	the	input	to	another	(nesting)!

• This	is	extremely	powerful!

• High-level	idea:	subqueries	return	relations	(yet	sometimes	just	values)

145

Subqueries	=	Nested	queries

SELECT ...
FROM ...
WHERE ...

(SELECT ...
FROM ...
WHERE ...)

Outer	block

Inner	block

146

Subqueries

important!

• A	subquery	is	a	SQL	query	nested	inside	a	larger	query
• Such	inner-outer	queries	are	called	nested	queries
• A	subquery	may	occur	in	a:
- SELECT	clause
- FROM	clause
- WHERE	clause
- HAVING	clause

• Rule	of	thumb:	avoid	writing	nested	queries	when	possible;	keep	in	
mind	that	sometimes	it’s	impossible

147

1.	Subqueries	in	SELECT

What happens if the subquery returns more than one city ?
Runtime error

Q: For each product return the city where it is manufactured!

SELECT P.pname, (SELECT C.city
FROM Company2 C
WHERE C.cid = P.cid)

FROM Product2 P

Product2 (pname, price, cid)
Company2 (cid, cname, city)

® "Scalar subqueries"

315

148

1.	Subqueries	in	SELECT

Q: For each product return the city where it is manufactured!

SELECT P.pname, C.city
FROM Product2 P, Company2 C
WHERE C.cid = P.cid

"unnesting the query" Whenever possible,
don't use nested queries

SELECT P.pname, (SELECT C.city
FROM Company2 C
WHERE C.cid = P.cid)

FROM Product2 P

Product2 (pname, price, cid)
Company2 (cid, cname, city)

315

149

1.	Subqueries	in	SELECT

Better: we can unnest
by using a GROUP BY:

Q: Compute the number of products made by each company!

SELECT C.cname, (SELECTcount (*)
FROM Product2 P
WHERE P.cid = C.cid)

FROM Company2 C

Product2 (pname, price, cid)
Company2 (cid, cname, city)

SELECT C.cname, count(*)
FROM Company2 C, Product2 P
WHERE C.cid=P.cid
GROUP BY C.cname

315

150

2.	Subqueries	in	FROM	clause

Q: Find all products whose prices are > 20 and < 30!

SELECT X.pname
FROM (SELECT *

FROM Product2 as P
WHERE price >20) as X

WHERE X.price < 30

SELECT pname
FROM Product2
WHERE price > 20 and price < 30

unnesting

Product2 (pname, price, cid)
Company2 (cid, cname, city)

X
PName Price cid

Powergizmo $29.99 1

MultiTouch $203.99 3

315

151

Subqueries in
WHERE clause

IN, ANY, ALL

152

3.	Subqueries	in	WHERE	
What do these queries compute?

SELECT a
FROM R
WHERE a IN

(SELECT * from U)
?

305R
a
1
2

SELECT a
FROM R
WHERE a < ANY

(SELECT * from U)

SELECT a
FROM R
WHERE a < ALL

(SELECT * from U)

U
a
2
3
4

?

?

153

3.	Subqueries	in	WHERE	
What do these queries compute?

SELECT a
FROM R
WHERE a IN

(SELECT * from U)

Since 2 is in the set
(2, 3, 4)

a
2

305R
a
1
2

SELECT a
FROM R
WHERE a < ANY

(SELECT * from U)

a
1
2

SELECT a
FROM R
WHERE a < ALL

(SELECT * from U)

a
1

U
a
2
3
4

Since 1 and 2 are <
than at least one
("any") of 2, 3 or 4

Since 1 is < than
each ("all") of 2, 3,
and 4

154

Something	tricky	about	Nested	Queries

SELECT c.city
FROM Company c,

Product pr,
Purchase p

WHERE c.name = pr.maker
AND pr.name = p.product
AND p.buyer = ‘Joe B’

Are	these	queries	equivalent?

Beware	of	duplicates!	

SELECT c.city
FROM Company c
WHERE c.name IN (
SELECT pr.maker
FROM Purchase p, Product pr
WHERE p.name = pr.product

AND p.buyer = ‘Joe B‘)

155

Something	tricky	about	Nested	Queries

SELECT DISTINCT c.city
FROM Company c,

Product pr,
Purchase p

WHERE c.name = pr.maker
AND pr.name = p.product
AND p.buyer = ‘Joe B’

Are	these	queries	equivalent?

SELECT DISTINCT c.city
FROM Company c
WHERE c.name IN (
SELECT pr.maker
FROM Purchase p, Product pr
WHERE p.name = pr.product

AND p.buyer = ‘Joe B‘)

Now	they	are	equivalent	(both	use	set	semantics)

156

Correlated	subqueries

• In	all	previous	cases,	the	nested	subquery	in	the	inner	select	block	
could	be	entirely	evaluated	before	processing	the	outer	select	block.		

• This	is	no	longer	the	case	for	correlated	nested	queries.		
• Whenever	a	condition	in	the	WHERE	clause	of	a	nested	query	
references	some	column	of	a	table	declared	in	the	outer	query,	the	
two	queries	are	said	to	be	correlated.		

• The	nested	query	is	then	evaluated	once	for	each	tuple	(or	
combination	of	tuples)	in	the	outer	query.	

157

Correlated	Queries	(Using	External	Vars in	Internal	Subquery)

SELECT DISTINCT title
FROM Movie AS m
WHERE year <> ANY(

SELECT year
FROM Movie
WHERE title = m.title)

Movie(title, year, director, length)

Note	also:	this	can	still	be	expressed	as	single	SFW	query…

Find	movies	whose	
title	appears	in	more	
than	one	year.

Note	the	scoping	
of	the	variables!

158

Complex	Correlated	Query

SELECT DISTINCT x.name, x.maker
FROM Product AS x
WHERE x.price > ALL(

SELECT y.price
FROM Product AS y
WHERE x.maker = y.maker

AND y.year < 1972)

Find	products	(and	their	
manufacturers)	that	are	
more	expensive	than	all	
products	made	by	the	
same	manufacturer	
before	1972

Product(name, price, category, maker, year)

Can	be	very	powerful	(also	much	harder	to	optimize)

159

3.	Subqueries	in	WHERE	(existential)

Existential quantifiers $

Using IN:

Q: Find all companies that make some products with price < 25!

SELECT DISTINCT C.cname
FROM Company2 C
WHERE C.cid IN (1, 2)

Product2 (pname, price, cid)
Company2 (cid, cname, city)

PName Price cid

Gizmo $19.99 1

Powergizmo $29.99 1

SingleTouch $14.99 2

MultiTouch $203.99 3

cid CName City

1 GizmoWorks Oslo

2 Canon Osaka

3 Hitachi Kyoto

315

160

3.	Subqueries	in	WHERE	(existential)

Existential quantifiers $

Using IN:

Q: Find all companies that make some products with price < 25!

SELECT DISTINCT C.cname
FROM Company2 C
WHERE C.cid IN (SELECT P.cid

FROM Product2 P
WHERE P.price < 25)

Product2 (pname, price, cid)
Company2 (cid, cname, city)

PName Price cid

Gizmo $19.99 1

Powergizmo $29.99 1

SingleTouch $14.99 2

MultiTouch $203.99 3

cid CName City

1 GizmoWorks Oslo

2 Canon Osaka

3 Hitachi Kyoto

315

"Set membership"

161

3.	Subqueries	in	WHERE	(existential)

Existential quantifiers $

Using EXISTS:

Q: Find all companies that make some products with price < 25!

SELECT DISTINCT C.cname
FROM Company2 C
WHERE EXISTS (SELECT *

FROM Product2 P
WHERE C.cid = P.cid

and P.price < 25)

Product2 (pname, price, cid)
Company2 (cid, cname, city)

PName Price cid

Gizmo $19.99 1

Powergizmo $29.99 1

SingleTouch $14.99 2

MultiTouch $203.99 3

cid CName City

1 GizmoWorks Oslo

2 Canon Osaka

3 Hitachi Kyoto

315

"Test for empty relations"

Correlated subquery

162

3.	Subqueries	in	WHERE	(existential)

Existential quantifiers $

Using ANY (also some):

Q: Find all companies that make some products with price < 25!

SELECT DISTINCT C.cname
FROM Company2 C
WHERE 25 > ANY (SELECT price

FROM Product2 P
WHERE P.cid = C.cid)

Product2 (pname, price, cid)
Company2 (cid, cname, city)

SQLlite does not support "ANY" L

PName Price cid

Gizmo $19.99 1

Powergizmo $29.99 1

SingleTouch $14.99 2

MultiTouch $203.99 3

cid CName City

1 GizmoWorks Oslo

2 Canon Osaka

3 Hitachi Kyoto

315

"Set comparison"

Correlated subquery

163

3.	Subqueries	in	WHERE	(existential)

Existential quantifiers $

Now, let's unnest:

Q: Find all companies that make some products with price < 25!

SELECT DISTINCT C.cname
FROM Company2 C, Product2 P
WHERE C.cid = P.cid

and P.price < 25

Existential quantifiers are easy ! J

Product2 (pname, price, cid)
Company2 (cid, cname, city)

PName Price cid

Gizmo $19.99 1

Powergizmo $29.99 1

SingleTouch $14.99 2

MultiTouch $203.99 3

cid CName City

1 GizmoWorks Oslo

2 Canon Osaka

3 Hitachi Kyoto

315

164

3.	Subqueries	in	WHERE	(universal)

Universal quantifiers "

Q: Find all companies that make only products with price < 25!

Q: Find all companies for which all products have price < 25!

Universal quantifiers are more complicated ! L
(Think about the companies that should not be returned)

same as:

Product2 (pname, price, cid)
Company2 (cid, cname, city)

315

165

3.	Subqueries	in	WHERE	(exist	not	->	universal)

2. Find all companies s.t. all their products have price < 25!

1. Find the other companies: i.e. they have some product ³ 25!

SELECT DISTINCT C.cname
FROM Company2 C
WHERE C.cid IN (SELECT P.cid

FROM Product2 P
WHERE P.price >= 25)

SELECT DISTINCT C.cname
FROM Company2 C
WHERE C.cid NOT IN (SELECT P.cid

FROM Product2 P
WHERE P.price >= 25)

Q: Find all companies that make only products with price < 25!
315

166

3.	Subqueries	in	WHERE	(exist	not	->	universal)

Using NOT EXISTS:

SELECT DISTINCT C.cname
FROM Company2 C
WHERE NOT EXISTS (SELECT *

FROM Product2 P
WHERE C.cid = P.cid

and P.price >= 25)

Universal quantifiers "

Q: Find all companies that make only products with price < 25!

Product2 (pname, price, cid)
Company2 (cid, cname, city)

315

167

3.	Subqueries	in	WHERE	(exist	not	->	universal)

Using ALL:

Universal quantifiers "

Q: Find all companies that make only products with price < 25!

SELECT DISTINCT C.cname
FROM Company2 C
WHERE 25 > ALL (SELECT price

FROM Product2 P
WHERE P.cid = C.cid)

Product2 (pname, price, cid)
Company2 (cid, cname, city)

SQLlite does not support "ALL" L

315

168

Question	for	Database	Fans	&	Friends

• How	can	we	unnest	the	universal	quantifier	query	?

This	topic	goes	beyond	the	
course	objectives;	only	for	

those	who	are	really	interested

169

Queries	that	must	be	nested

• Definition:	A	query	Q	is	monotone	if:
- Whenever	we	add	tuples	to	one	or	more	of	the	tables…
- …	the	answer	to	the	query	cannot	contain	fewer	tuples

• Fact:		all	unnested	queries	are	monotone	
- Proof:	using	the	"nested	for	loops"	semantics

• Fact:	Query	with	universal	quantifier	is	not	monotone
- Add	one	tuple	violating	the	condition.	Then	"all"	returns	fewer	tuples

• Consequence:	we	cannot	unnest	a	query	with	a	universal	quantifier

This	topic	goes	beyond	the	
course	objectives;	only	for	

those	who	are	really	interested

170

The	drinkers-bars-beers	example

Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serve some beer they like.

Find drinkers that frequent only bars that serve only beer they like.

x: $y. $z. Frequents(x, y)ÙServes(y,z)ÙLikes(x,z)

x: "y. Frequents(x, y)Þ ($z. Serves(y,z)ÙLikes(x,z))

x: "y. Frequents(x, y)Þ "z.(Serves(y,z) Þ Likes(x,z))

Find drinkers that frequent some bar that serves only beers they like.

x: $y. Frequents(x, y)Ù"z.(Serves(y,z) Þ Likes(x,z))

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Challenge: write these in SQL.
Solutions: http://queryviz.com/online/

331

171

Basic	SQL	Summary

• SQL	provides	a	high-level	declarative	language	for	manipulating	data	(DML)

• The	workhorse	is	the	SFW	block

• Set	operators	are	powerful	but	have	some	subtleties

• Powerful,	nested	queries	also	allowed.

1721

WITH clause

173

WITH	clause:	temporary	relations
SELECT pname, price
FROM Product2
WHERE price =

(SELECT max(price)
FROM Product2)

315

WITH max_price(value) as
(SELECT max(price)
FROM Product2)

SELECT pname, price
FROM Product2, max_price
WHERE price = value

Product (pname, price, cid)

The	WITH	clause	defines	a	temporary	
relation	that	is	available	only	to	the	query	
in	which	it	occurs.	Sometimes	easier	to	
read.	Very	useful	for	queries	that	need	to	
access	the	same	intermediate	result	
multiple	times

174

WITH	clause:	temporary	relations
SELECT pname, price
FROM Product2
WHERE price =

(SELECT max(price)
FROM Product2)

315

WITH max_price as
(SELECT max(price) as value
FROM Product2)

SELECT pname, price
FROM Product2, max_price
WHERE price = value

Product (pname, price, cid)

The	WITH	clause	defines	a	temporary	
relation	that	is	available	only	to	the	query	
in	which	it	occurs.	Sometimes	easier	to	
read.	Very	useful	for	queries	that	need	to	
access	the	same	intermediate	result	
multiple	times

175

Witnesses

176

Motivation:	What	are	these	queries	supposed	to	return?

PName Price cid
Gizmo 15 1
SuperGizmo 20 1
iTouch1 300 2
iTouch2 300 2

Product2
cid cname city
1 GizmoWorks Oslo
2 Apple MountainView

Company2

Find	for	each	company	id,	the	maximum	
price	amongst	its	products ?

177

Motivation:	What	are	these	queries	supposed	to	return?

PName Price cid
Gizmo 15 1
SuperGizmo 20 1
iTouch1 300 2
iTouch2 300 2

Product2
cid cname city
1 GizmoWorks Oslo
2 Apple MountainView

Company2

cid mp
1 20
2 300

Find	for	each	company	id,	the	maximum	
price	amongst	its	products

Find	for	each	company	id,	the	product	
with	maximum	price	amongst	its	products ?

178

Motivation:	What	are	these	queries	supposed	to	return?

PName Price cid
Gizmo 15 1
SuperGizmo 20 1
iTouch1 300 2
iTouch2 300 2

Product2
cid cname city
1 GizmoWorks Oslo
2 Apple MountainView

Company2

cid mp pname
1 20 SuperGizmo
2 300 iTouch1
2 300 iTouch2

cid mp
1 20
2 300

Find	for	each	company	id,	the	maximum	
price	amongst	its	products

Find	for	each	company	id,	the	product	
with	maximum	price	amongst	its	products
(Recall	that	"group	by	cid"	can	just	give	us
one	single	tuple	per	cid)

179

Witnesses:	simple	(1/4)

Q:	Find	the	most	expensive	product +	its	price
315

Product2 (pname, price, cid)

(Finding	the	maximum	price	alone	would	be	easy)

180

Witnesses:	simple	(2/4)

SELECT max(P1.price)
FROM Product2 P1

But	we	want	the	"witnesses,"	i.e.	the	product(s)	with	
the	max	price.	How	do	we	do	that?

Our	Plan:
• 1.	Compute	max	price	in	a	subquery

Q:	Find	the	most	expensive	product +	its	price

Product2 (pname, price, cid)
315

1.

(Finding	the	maximum	price	alone	would	be	easy)

181

Witnesses:	simple	(3/4)

SELECT P2.pname, P2.price
FROM Product2 P2

Our	Plan:
• 1.	Compute	max	price	in	a	subquery
• 2.	Compute	each	product	and	its	price...

Q:	Find	the	most	expensive	product +	its	price

Product2 (pname, price, cid)

SELECT max(P1.price)
FROM Product2 P1

But	we	want	the	"witnesses,"	i.e.	the	product(s)	with	
the	max	price.	How	do	we	do	that?

315

1.

2.

(Finding	the	maximum	price	alone	would	be	easy)

182

Witnesses:	simple	(4/4)

SELECT P2.pname, P2.price
FROM Product2 P2
WHERE P2.price =

(SELECT max(P1.price)
FROM Product2 P1)

Our	Plan:
• 1.	Compute	max	price	in	a	subquery
• 2.	Compute	each	product	and	its	price...

and	compare	the	price	with	the	max	price

(Finding	the	maximum	price	alone	would	be	easy)

Product2 (pname, price, cid)

Q:	Find	the	most	expensive	product +	its	price
315

