
75

L03:	SQL

76

Why	I	don't	post	slides	*before*	lecture

Source:	”Thinking	Physics:	Understanding	Practical	Reality”,	Lewis	Carroll	Epstein,	1979-2009.	
http://www.amazon.com/Thinking-Physics-Understandable-Practical-Reality/dp/0935218084

...

...

From	the	Preamble	of	one	of	the	best	physics	books	
there	is:	„How	to	read	this	book“

77

Studying	material:	"Under	which	study	condition	do	you	learn	better?"

Source:	Karpicke	&	Blunt,	"Retrieval	Practice	Produces	More	Learning	than	Elaborative	Studying	with	Concept	Mapping,"	Science,	2011.

Judged	performance
(=what	people	think)

Actual	performance
(=what	is	actually	working)

passive	reading active	Q&A

78
Source:	http://5.mshcdn.com/wp-content/gallery/the-year-2000-as-imagined-in-1900/future.jpg

The	year	2000	imagined	in	1900

79

Announcements!

• Textbooks	(v2):	link	to	Amazon	international	ed
• Python,	Jupyter
• Keep	up	the	great	class	interactions	J
• Microphone
• Continue	giving	feedback
• Talk	announcement	today	at	3pm

80

81

Table	Alias	(Tuple	Variables)

SELECT DISTINCT pName, address
FROM Person, University
WHERE works_for = uName

SELECT DISTINCT Person.pName, University.address
FROM Person, University
WHERE Person.works_for = University.uName

SELECT DISTINCT X.pName, Y.address
FROM Person as X, University Y
WHERE X.works_for = Y.uName

which address?
Error!

Note that "as" is optional !!

Person (pName, address, works_for)
University (uName, address)

312

82

Column	Alias	(rename	attributes)

SELECT DISTINCT X.pName, Y.address
FROM Person as X, University Y
WHERE X.works_for = Y.uName

Person (pName, address, works_for)
University (uName, address)

SELECT DISTINCT X.pName as name, Y.address adr
FROM Person as X, University Y
WHERE X.works_for = Y.uName

312

83

SELECT cName
FROM
WHERE

Quiz	2

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product Company
CName StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

302Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

Q:	Find	all	US	companies	that	manufacture	
products	in	the	'Gadgets'	category!

84

SELECT cName
FROM Product P, Company
WHERE country = 'USA'

and P.category = 'Gadgets'
and P.manufacturer = cName

Quiz	2

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product Company
CName StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

302Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

Q:	Find	all	US	companies	that	manufacture	
products	in	the	'Gadgets'	category!

Cname

GizmoWorks

GizmoWorks

85

SELECT DISTINCT cName
FROM Product P, Company
WHERE country = 'USA'

and P.category = 'Gadgets'
and P.manufacturer = cName

Quiz	2

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product Company
CName StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

302Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

Q:	Find	all	US	companies	that	manufacture	
products	in	the	'Gadgets'	category!

Cname

GizmoWorks

86

Quiz	3

SELECT DISTINCT cName
FROM
WHERE

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

Q: Find all US companies that manufacture both a product
below $20 and a product above $25.

302

87

Quiz	3

Q: Find all US companies that manufacture both a product
below $20 and a product above $25.

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

SELECT DISTINCT cName
FROM Product as P, Company
WHERE country = 'USA'

and P.price < 20
and P.price > 25
and P.manufacturer = cName

Wrong! Gives empty
result: There is no
product with price
<20 and >25

302

88

Quiz	3

P.price < 20 and
P.price > 25

Q: Find all US companies that manufacture both a product
below $20 and a product above $25.

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

C

P

not possible!
-> Empty result

P.price < 20

C

P1

P2 P.price > 25

302

89

Quiz	3

Q: Find all US companies that manufacture both a product
below $20 and a product above $25.

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

SELECT DISTINCT cName
FROM Product as P, Company
WHERE country = 'USA'

and (P.price < 20
or P.price > 25)
and P.manufacturer = cName

Returns companies
with single product
w/price (<20 or >25)

P.price<20 or
P.price>25

C

P

302

90

Quiz	3

Q: Find all US companies that manufacture both a product
below $20 and a product above $25.

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

SELECT DISTINCT cName
FROM Product as P1, Product as P2, Company
WHERE country = 'USA'

and P1.price < 20
and P2.price > 25
and P1.manufacturer = cName
and P2.manufacturer = cName

302

91

Quiz	3
PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

...

P1

Company
CName StockPrice Country

GizmoWorks 25 USA

...

Cname

GizmoWorks

PName Price Category Manufacturer

...

Powergizmo $29.99 Gadgets GizmoWorks

P2

SELECT DISTINCT cName
FROM Product as P1, Product as P2, Company
WHERE country = 'USA'

and P1.price < 20
and P2.price > 25
and P1.manufacturer = cName
and P2.manufacturer = cName

302

92

Meaning	(Semantics)	of	conjunctive	SQL	Queries

Answer = {}
for x1 in R1 do

for x2 in R2 do
…..

for xn in Rn do
if Conditions

then Answer = Answer È {(a1,…,ak)}
return Answer

SELECT a1, a2, …, ak
FROM R1 as x1, R2 as x2, …, Rn as xn
WHERE Conditions

Conceptual evaluation strategy (nested for loops):

93

Meaning	(Semantics)	of	conjunctive	SQL	Queries

Answer = {}
for x1 in R1 do

for x2 in R2 do
…..

for xn in Rn do
if Conditions

then Answer = Answer È {(a1,…,ak)}
return Answer

att1 att2 ... attk
...

...

...

...

R1
att1 att2 ... attk
...

...

...

...

R2
att1 att2 ... attk
...

...

...

...

R3

94

Conceptual	Evaluation	Strategy

• Semantics	of	an	SQL	query	defined	in	terms	of	the	following	
conceptual	evaluation	strategy:
- FROM:	Compute	the	cross-product	of	relation-list.
- WHERE:	Discard	resulting	tuples	if	they	fail	qualifications.
- SELECT:	Delete	attributes	that	are	not	in	target-list.
- If	DISTINCT	is	specified,	eliminate	duplicate	rows.

• This	strategy	is	probably	the	least	efficient	way	to	compute	a	query!		
An	optimizer	will	find	more	efficient	strategies	to	compute	the	same	
answers.

95

E.LastName E.DepartmentID D.DepartmentID D.DepartmentName
Robinson 34 34 Clerical
Jones 33 33 Engineering
Smith 34	 34	 Clerical
Steinberg 33 33 Engineering
Rafferty 31 31 Sales

Inner	Joins
LastName DepartmentID
Rafferty 31
Jones 33
Steinberg 33
Robinson 34
Smith 34

DepartmentID DepartmentName
31 Sales
33 Engineering
34 Clerical
35 Marketing

Employee Department

SELECT *
FROM Employee E, Department D
WHERE E.DepartmentID = D. DepartmentID

Source:	http://en.wikipedia.org/wiki/Join_(SQL)#Cross_join

344

96

E.LastName E.DepartmentID D.DepartmentID D.DepartmentName
Rafferty 31 31 Sales
Jones 33 31 Sales
Steinberg 33 31 Sales
Smith 34 31 Sales
Robinson 34 31 Sales
Rafferty 31 33 Engineering
Jones 33 33 Engineering
Steinberg 33 33 Engineering
Smith 34 33 Engineering
Robinson 34 33 Engineering
Rafferty 31 34 Clerical
Jones 33 34 Clerical
Steinberg 33 34 Clerical
Smith 34 34 Clerical
Robinson 34 34 Clerical
Rafferty 31 35 Marketing
Jones 33 35 Marketing
Steinberg 33 35 Marketing
Smith 34 35 Marketing
Robinson 34 35 Marketing

Cross	Joins:	usually	not	what	you	want	L
LastName DepartmentID
Rafferty 31
Jones 33
Steinberg 33
Robinson 34
Smith 34

DepartmentID DepartmentName
31 Sales
33 Engineering
34 Clerical
35 Marketing

Employee Department

SELECT *
FROM Employee E, Department D
WHERE E.DepartmentID = D. DepartmentID

344

97

Definitions	(for	job	interviews?)

• An	equi-join is	a	join	in	which	the	joining	condition	is	based	on	
equality	between	values	in	the	common	columns;	common	columns	
appear	redundantly	in	the	result	table

• A	natural	join is	an	equi-join	in	which	one	of	the	duplicate	columns	
is	eliminated	in	the	result	table

• A	cross	join returns	the	Cartesian	product	of	rows	from	tables	in	the	
join	
- (i.e.	it	will	produce	rows	which	combine	each	row	from	the	first	table	with	
each	row	from	the	second	table,	that's	usually	*not*	what	you	want)

98

Definitions	(for	job	interviews?)
Equi-join
E.LastName E.DepartmentID D.DepartmentID D.DepartmentName
Robinson 34 34 Clerical
Jones 33 33 Engineering
Smith 34	 34	 Clerical
Steinberg 33 33 Engineering
Rafferty 31 31 Sales

E.LastName DepartmentID D.DepartmentName
Robinson 34 Clerical
Jones 33 Engineering
Smith 34	 Clerical
Steinberg 33 Engineering
Rafferty 31 Sales

Natural join

Cross join
E.LastName E.DepartmentID D.DepartmentID D.DepartmentName

Rafferty 31 31 Sales
Jones 33 31 Sales
Steinberg 33 31 Sales
Smith 34 31 Sales
Robinson 34 31 Sales
Rafferty 31 33 Engineering

...

99

Alternative	JOIN	Syntax
LastName DepartmentID
Rafferty 31
Jones 33
Steinberg 33
Robinson 34
Smith 34

DepartmentID DepartmentName
31 Sales
33 Engineering
34 Clerical
35 Marketing

Employee Department

SELECT *
FROM Employee E, Department D
WHERE E.DepartmentID = D. DepartmentID
AND E.DepartmentID = 34

SELECT *
FROM Employee E JOIN Department D

ON E.DepartmentID = D. DepartmentID
WHERE E.DepartmentID = 34

E.LastName E.DepartmentID D.DepartmentID D.DepartmentName
Robinson 34 34 Clerical
Smith 34	 34	 Clerical

344

100

NATURAL	JOIN	Syntax
LastName DepartmentID
Rafferty 31
Jones 33
Steinberg 33
Robinson 34
Smith 34

DepartmentID DepartmentName
31 Sales
33 Engineering
34 Clerical
35 Marketing

Employee Department

SELECT *
FROM Employee E, Department D
WHERE E.DepartmentID = D. DepartmentID
AND E.DepartmentID = 34

SELECT *
FROM Employee E NATURAL JOIN Department D

WHERE E.DepartmentID = 34

LastName DepartmentID DepartmentName
Robinson 34 Clerical
Smith 34	 Clerical

344

Syntax is not
supported by all
DBMS's

101

Using	the	Formal	Semantics

SELECT DISTINCT R.a
FROM R, S, T
WHERE R.a=S.a

or R.a=T.a

Returns R Ç (S È T)
if S ≠ ∅ and T ≠ ∅

What do these queries compute?

SELECT DISTINCT R.a
FROM R, S
WHERE R.a=S.a

Returns R Ç S
(intersection)

T
a

2

a

1

a

1

2

305

R
a

1

2

S
a

1

R(a), S(a), T(a)

102

305Using	the	Formal	Semantics

SELECT DISTINCT R.a
FROM R, S, T2 as T
WHERE R.a=S.a

or R.a=T.a

Returns ∅
if S = ∅ or T = ∅

What do these queries compute?

SELECT DISTINCT R.a
FROM R, S
WHERE R.a=S.a

Returns R Ç S
(intersection)

Can seem counterintuitive! But remember conceptual evaluation
strategy: Nested loops. If one table is empty -> no looping

R
a

1

2

S
a

1

T2
a

R(a), S(a), T2(a)

a

1

a

103

Illustration	with	Python

The	comparison	gets	never	evaluated

305

104

1. Aggregates
2. Groupings
3. Having

105

Aggregation

SELECT count(*)
FROM Car
WHERE price > 100

Except	count,	all	aggregations	apply	to	a	single	attribute

SELECT avg(price)
FROM Car
WHERE maker='Toyota'

SQL	supports	several	aggregation	operations:

sum,	count,	min,	max,	avg

348Car (name, price, maker)

106

Aggregation

SELECT avg(price)
FROM Car
WHERE maker='Toyota'

Car
Name Price Maker
M3 120 BMW
M5 150 BMW
Prius 50 Toyota
Lexus1 75 Toyota
Lexus2 100 Toyota

(No column name)
75

Database creates new attribute
name (for SQLserver)

348

107

Aggregation	with	rename

SELECT count(*) as n
FROM Car
WHERE price > 100

Name Price Maker
M3 120 BMW
M5 150 BMW
Prius 50 Toyota
Lexus1 75 Toyota
Lexus2 100 Toyota

n
2

Car

Database creates *our*
new attribute name

348

"as" optional

108

SELECT count(maker)
FROM Car
WHERE price > 100

Aggregation:	Count	Distinct

Name Price Maker
M3 120 BMW
M5 150 BMW
Prius 50 Toyota
Lexus1 75 Toyota
Lexus2 100 Toyota

Car
348

We probably want to ignore duplicates:

SELECT count(DISTINCT maker)
FROM Car
WHERE price > 100

Same as count(*)

(No column name)
1

109

Simple	Aggregation	1/3

SELECT sum(price * quantity)
FROM Purchase

Purchase (product, price, quantity)

SELECT sum(price * quantity)
FROM Purchase
WHERE product = 'Bagel'

What do these
queries mean?

308

110

Simple	Aggregation	2/3
Purchase

SELECT sum(price * quantity)
FROM Purchase
WHERE product = 'Bagel'

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

3 * 20 = 60
2 * 20 = 40

sum: 100

(No column name)
100

Database creates
new attribute name

308

111

Simple	Aggregation	3/3
Purchase

SELECT sum(price) * sum(quantity)
FROM Purchase
WHERE product = 'Bagel'

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

3
2

sum: 5 *

(No column name)
200

308

20
20

sum: 40 = 200

112

Grouping	and	Aggregation

Product TotalSales
Bagel 40
Banana 20

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

Find total quantities for all purchases with price over $1
grouped by product.

Purchase
308

Notice: we use "sales" for
total number of products sold

113

From	®Where	® Group	By	® Select

SELECT product, sum(quantity) as TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

Product TotalSales
Bagel 40
Banana 20

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

1
2
3

4

Select contains
• grouped attributes
• and aggregates

Purchase
308

114

Let's	confuse	the	database	engine

SELECT product, quantity
FROM Purchase
GROUP BY product

Product Quantity
Bagel ?
Banana ?

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

What	quantity	should	the	
DB	return	for	Banana?

The	DB	engine	is	confused,	there	
is	no	single	quantity	for	banana	
(it's	an	ill-defined	query).	It	
should	thus	return	an	error	(only	
SQLite	misbehaves	and	returns	
something,	but	which	makes	no	
sense).	Please	think	this	through	
carefully!

Purchase
308

115

Groupings	illustrated	with	colored	shapes

SELECT color,
avg(numc) anc

FROM Shapes
GROUP BY color

group	by	color group	by	numc	(#	of	corners)

color anc
blue 4
orange 5

SELECT numc
FROM Shapes
GROUP BY numc

numc
3
4
5
6

116

Another	Example

SELECT product,
sum(quantity) as SumQ,
max(price) as MaxP

FROM Purchase
GROUP BY product

Product SumQ MaxP
Bagel 40 3
Banana 70 4

Next, focus only on
products with at
least 50 sales

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

Purchase
308

117

Having	Clause

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

SELECT product,
sum(quantity) as SumQ,
max(price) as MaxP

FROM Purchase
GROUP BY product
HAVING sum(quantity) > 50

Q: Similar to before, but only products with at least 50 sales.

Product SumQ MaxP
Banana 70 4

308

118

Quizz

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

SELECT product, sum(quantity) as SumQ
FROM Purchase
WHERE quantity > 15
GROUP BY product
HAVING sum(quantity) > 40

What does this query return over the given database?

Product SumQ
Bagel 40
Banana 50

308

119

SELECT S
FROM R1,…,Rn

WHERE C1
GROUP BY a1,…,ak

HAVING C2

Evaluation
1. Evaluate	FROM
2. WHERE,	apply	condition	C1
3. GROUP	BY	the	attributes	a1,…,ak
4. Apply	condition	C2	to	each	group	(may	have	aggregates)
5. Compute	aggregates	in	S	and	return	the	result

1
2
3
4

5

C1: is any condition on the attributes in
R1,…,Rn

C2: is any condition on aggregates and
on attributes a1,…,ak

S: may contain attributes a1,…,ak and/or
any aggregates but no other attributes

General	form	of	Grouping	and	Aggregation

120

SELECT S
FROM R1,…,Rn

WHERE C1
GROUP BY a1,…,ak

HAVING C2
ORDER BY S2

Evaluation
1. Evaluate	FROM
2. WHERE,	apply	condition	C1
3. GROUP	BY	the	attributes	a1,…,ak
4. Apply	condition	C2	to	each	group	(may	have	aggregates)
5. Compute	aggregates	in	S	and	return	the	result
6. Sort	rows	by	ORDER	BY	clause

1
2
3
4

5

C1: is any condition on the attributes in
R1,…,Rn

C2: is any condition on aggregates and
on attributes a1,…,ak

S: may contain attributes a1,…,ak and/or
any aggregates but no other attributes

General	form	of	SQL	Query

6
The logical order is useful for under-
standing, but not always correct. The
ANSI SQL standard does not require
a specific processing order and
leaves that to the implementation.
Recall our intro example with
SELECT DISTINCT and order by!
Notice that that example can't be
explained with the order shown here

121

Conceptual	Evaluation	Strategy

• The	cross-product	of	relation-list	is	computed	(FROM),	tuples	that	
fail	qualification	are	discarded	(WHERE),	then:

• GROUP	BY:	the	remaining	tuples	are	partitioned	into	groups	by	the	
value	of	attributes	in	grouping-list.		

• HAVING:	The	group-qualification	is	then	applied	to	eliminate	some	
groups.		Expressions	in	group-qualification	must	have	a	single	value	
per	group!
- In	effect,	an	attribute	in	group-qualification	that	is	not	an	argument	of	an	
aggregate	op	must	also	appear	in	grouping-list.		(SQL	does	not	exploit	
primary	key	semantics	here!)

• One	answer	tuple	is	generated	per	qualifying	group.

122

Don't	use	new	Alias	in	HAVING	clause

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

SELECT product, sum(quantity) as SumQ
FROM Purchase
WHERE quantity > 15
GROUP BY product
HAVING SumQ > 35

What does this query return over the given database?

Product SumQ
Bagel 40
Banana 50

Error in SQL server!
Reason: HAVING is
evaluated before SELECT!
(However, SQLite works:
different implementation)

Source:	http://stackoverflow.com/questions/2068682/why-cant-i-use-alias-in-a-count-column-and-reference-it-in-a-having-clause

308

123

Don't	use	new	Alias	in	HAVING	clause

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

SELECT product, sum(quantity) as SumQ
FROM Purchase
WHERE quantity > 15
GROUP BY product
HAVING sum(quantity) > 35
ORDER BY sumQ desc

What does this query return over the given database?

Product SumQ
Banana 50
Bagel 40

308

Works! Notice
that new sorting

