
1

L02-L06:	SQL

CS3200 Database	design	(sp18 s2)
1/11/2018

2

L01:	SQL	introduction

3

SQL overview

4

SQL	Introduction

• SQL	is	a	standard	language	for	querying	and	manipulating	data

• SQL	is	a	very	high-level	programming	language
- This	works	because	it	is	optimized	well!

• Many	standards	out	there:	
- ANSI	SQL,		SQL92	(a.k.a.	SQL2),		SQL99	(a.k.a.	SQL3),	….
- Vendors	support	various	subsets

NB:	Probably	the	world’s	most	successful	parallel
programming	language	(multicore?)

SQL stands	for
Structured	Query	Language

5

SQL	Has	Three	Major	Sub-Languages

• Data	Definition	Language	(DDL)
- Define	a	relational	schema	(create,	alter,	and	drop	tables;	establish	
constraints

- Create/alter/drop	tables	and	their	attributes

• Data	Manipulation	Language	(DML)
- Insert/delete/modify	tuples	in	tables
- Commands	that	maintain	and	query	a	database	(our	main	focus!)

• Data	Control	Language	(DCL)
- Commands	that	control	a	database,	including	administering	privileges	and	
committing	data

6

An	Algorithm

• Stand	up	and	think	of	the	number	1
• Pair	off	with	someone	standing,	add	your	numbers	together,	and	
adopt	the	sum	as	your	new	number

• One	of	you	should	sit	down;	the	other	should	go	back	to	step	2

7

Scalability

log	n

n

size	of	problem

tim
e	
to
	so

lv
e

8

Most	spectacular	these	days:	theoretic	potential	
for	perfect	scaling!

• perfect	scaling
- given	sufficient	resources,	performance	does	not	degrade		as	the	database	
becomes	larger

• key:		parallel	processing

• cost:	number	of	processors	polynomial	in	the	size	of	the	DB
- remember	our	in-class	counting	exercise

• all	(most)	relational	operators	highly	parallelisable

9

Moore's	law

Source:	http://en.wikipedia.org/wiki/Moore's_law

Multi-cores

10

What	is	SQL?

• It's	a	language	(like	English,	Spanish,	
German,	…)

• There	are	only	a	few	key	words	that	you	
have	to	learn	– it’s	fairly	simple

• It‘s	major	purpose	is	to	communicate	with	
a	database	and	ask	a	database	for	data

• It‘s	a	declarative	language	(you	define	
what	to	do)

• Simplicity	has	it‘s	cost	– it	gets	complex	
quickly
- Imagine	only	having	2	verbs	(go,	put,	wait)	to	

express	all	you	do	in	a	lifetime
- It's	either	infeasible	or	you	have	to	combine	a	

lot	basic	actions	to	construct	a	more	complex	
action	
(e.g.	skydiving	=	put	parachute	into	backpack,	
put	the	backpack	on	your	back,	go	airplane,	
wait	until	airplane	is	at	14k	feet,	go	to	open	
door,	go	outside	airplane,	…)

• Declarative	programming	is	perceived	as	
non-intuitive	(well,	decide	for	yourself	J)

The	Positives The	Challenges

11

Different	symantics	between	Excel	and	
Database	tables

Excel

Database1

row

tuple/	entity/	
record/	row

column

attribute/	field/	
column

table heading

attribute
name

Table	name

1	A	Database	(DB)	is	simply	a	system	that	holds	multiple	tables	(like	Excel	has	multiple	sheets)

12

Tables	in	SQL

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product

Attribute names Table name

Key

Tuple / row
(Entity)

Attribute

13

Data	Types	in	SQL

• Atomic	types
- Character	strings:	CHAR(20),	VARCHAR(50)
- Numbers:	INT,	BIGINT,	SMALLINT,	FLOAT
- Others:	MONEY,	DATETIME,	…

• Record	(aka	tuple)
- Every	attribute	must	have	an	atomic	type

• Table	(aka	relation)
- A	set	of	tuples	(hence	tables	are	flat!)

14

Table	Schemas

• The	schema	of	a	table	is	the	table	name,	its	attributes,	and	their	
types:

• A	key	is	an	attribute	whose	values	are	unique;	we	underline	a	key

Product(Pname: string, Price: float,
Category: string, Manufacturer: string)

Product(Pname: string, Price: float,
Category: string, Manufacturer: string)

15

Basic SQL

16

SQL	Query

• Basic	form	(there	are	many	many	more	bells	and	whistles)

Call	this	a	SFW query.

SELECT <attributes>
FROM <one or more relations>
WHERE <conditions>

17

Simple	SQL	Query

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

SELECT *
FROM Product
WHERE category='Gadgets'

Product

302Our friend here shows that you can follow along in
SQLite. Just install the database from the text file
"300 - ..." available in our sql folder

18

Simple	SQL	Query

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

SELECT *
FROM Product
WHERE category='Gadgets'

Product

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorksSelection

302Our friend here shows that you can follow along in
SQLite. Just install the database from the text file
"300 - ..." available in our sql folder

19

Practice	with	your	own	local	databases 302

If you are using Windows:
1. Download the appropriate text files from our repository
2. Open them with "Wordpad" (not "Notepad" which messes up the text!)
3. Paste the SQL commands into your SQLite version, and execute

20

Simple	SQL	Query

PName Price Manufacturer
SingleTouch $149.99 Canon
MultiTouch $203.99 Hitachi

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

SELECT pName, price, manufacturer
FROM Product
WHERE price > 100

Product

Selection
& Projection

302

21

Selection	vs.	Projection

PName Price
SingleTouch $149.99
MultiTouch $203.99

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

SELECT pName, price
FROM Product
WHERE price > 100

Product
One projects onto
some attributes
(columns)
-> happens in the
SELECT clause

One selects certain
entires=tuples (rows)
-> happens in the
WHERE clause
-> acts like a filter

302

22

A	Few	Details

• SQL	commands	are	case	insensitive:
- SELECT =	Select	=	select
- Product =		product

• But	values	are	not:
- Different:	'Boston',		'boston'
- (Notice:	in	general,	but	default	settings	will	vary	from	DBMS	to	DBMS.	Just	to	be	safe,	

always	assume	values	to	be	case	sensitive!)

• Use	single	quotes	for	constants:
- 'abc' - yes
- "abc"	- no

23

Eliminating	Duplicates

Category
Gadgets
Gadgets

Photography
Household

Category
Gadgets

Photography
Household

SELECT DISTINCT category
FROM Product

SELECT category
FROM Product

Set vs. Bag
semantics

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
PowerGizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

Product

302

24

Ordering	the	Results

- Ties in attribute price broken by attribute pname
- Ordering is ascending by default. Descending:

SELECT pName, price, manufacturer
FROM Product
WHERE category='Gadgets'

and price > 10
ORDER BY price, pName

... ORDER BY price ASC, pname DESC

302

25

SELECT category
FROM Product
ORDER BY pName

SELECT DISTINCT category
FROM Product
ORDER BY category

SELECT DISTINCT category
FROM Product
ORDER BY pName

?
?
?

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

Product302

26

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

Category
Gadgets

Household
Photography

Category
Gadgets

Household
Gadgets

Photography

Syntax error on large DBMSs
(Oracle, PostgreSQL, SQL
server) / unpredictable results
on others(MySQL, SQLite)

SELECT category
FROM Product
ORDER BY pName

SELECT DISTINCT category
FROM Product
ORDER BY category

SELECT DISTINCT category
FROM Product
ORDER BY pName

Product302

"ORDER BY items must appear in the select list if SELECT DISTINCT is specified."

27

L02:	SQL	Basics

28

Announcements!

• Microphone
• If	you	still	have	SQLite	trouble,	please	ask	Disha or	Priyal for	help	during	
lecture!

• Piazza:	please	be	specific	on	Piazza	with	your	problem,	so	we	can	help	you	
remotely.	
- Compare:	"I	can't	install	SQLite.	What	should	I	do?"	(->	come	to	office	hours)	vs.	"I	get	

error	message	XYZ	when	I	do	ZYX.	Here	is	a	screenshot.	What	should	I	do?"

• Piazza:	please	also	post	your	lessons	learned	(e.g.,	John's	comment	on	FF v56)
• Textbooks
• Homework	#1	will	be	released	by	tonight	together	with	PostgreSQL	
installation	guide	(you	have	2	weeks)

• Python,	Jupyter

29

Some history

30

Some	"birth-years"

• 2004:	Facebook

• 1998:	Google
• 1995:	Java,	Ruby
• 1993:	World	Wide	Web
• 1991:	Python

• 1985:	Windows

• 1974:	SQL

31

SQL:	Declarative	Programming

SQL

Procedural	Language:	you	have	to	specify	exact	
steps	to	get	the	result.

Declarative	Language:	you	say	what	you	want	
without	having	to	say	how	to	do	it.	

32

SQL:	was	not	the	only	Attempt

SQL

Source:	http://en.wikipedia.org/wiki/QUEL_query_languages

QUEL

Commercially not used anymore since ~1980

33

Disruptive	Innovation • Disruptive	innovations	are	generally	
not	acceptable	for	the	mass	market	
when	they	are	introduced.	Only	the	
fringes	of	the	market pick	up	the	
innovation	in	the	first	iteration

• It	performs	worse in	one	or	more	
areas,	but	is	typically	simpler,	more	
reliable,	or	more	convenient	than	
existing	technologies.

• It	is	less	profitable	than	existing	
technologies.	Leading	firms'	most	
profitable	customers	generally	can't	
use	it	and	don't	want	it.

• As	the	innovator	continues	to	refine	
their	product	the	utility	value	to	the	
market	increases

• Its	performance	trajectory	is	steeper	
than	that	of	existing	technologies.

• Large	organizations	are	
fundamentally	incapable	of	
successfully	bringing	it	to	market.

Source:	After	“The	Innovator’s	Dilemma”	by	Clayton	Christensen,	1997.

Sustaining	technology:	Listen	to	customers
Disruptive	technology:	Not	market-driven!

Performance

Time

34

iPhone:	Disruptive	Innovation	or	not?

Source:	http://www.youtube.com/watch?v=eywi0h_Y5_U ,	http://www.asymco.com/2012/01/16/apple-is-the-top-personal-computer-vendor/

2:	Laptops1:	"Business	Phones"
Microsoft	in	2007

35

What	keyboard	without	keys	can	do...

Sources:	https://en.wikipedia.org/wiki/Swype,	https://en.wikipedia.org/wiki/SwiftKey

In	Feb	2016,	
SwiftKey	was	
purchased	by	
Microsoft,	for	
250	M$

36

The	keyboard	of	the	future?

Sources:	http://www.wired.com/2014/06/siri_ai/

37

38

Keyboards	and	emails?

Sources:	http://www.buzzfeed.com/benrosen/how-to-snapchat-like-the-teens

39

What	is	this?

Source:	http://pluggedin.kodak.com/pluggedin/post/?id=687843

(1975)

40

SQL:	some	history

• Dr.	Edgar	Codd	(IBM)
- CACM	June	1970:	"A	Relational	Model	of	

Data	for	Large	Shared	Data	Banks"
http://seas.upenn.edu/~zives/03f/cis550/codd.pdf

• Standardized
- 1986		by	ANSI:	SQL1
- 1992:	Revised:	SQL2

• Approx	580	page	document	describing	syntax	and	semantics
- Revised:	1999,	2003,	2008,	...

• Players
- Microsoft,	IBM,	Relational	Software	(Oracle),	….

• Every	vendor	has	a	slightly	different	version	of	SQL
• But	the	main	commands	are	standardized

41

Codd's	(disruptive	?)	innovation

Source:	http://seas.upenn.edu/~zives/03f/cis550/codd.pdf

42

SQL	and	the	relational	model	as	standard

Source:	"Information	Systems:	A	Manager’s	Guide	to	Harnessing	Technology	(book	v1.4),"	p.185,	Gallaugher,	2012.

43

Databases we are using

44

Client/Server	Architecture

• There	is	a	single	server	that	stores	the	database	(called	DBMS	or	
RDBMS):
- Usually	a	beefy	system,	e.g.	IISQLSRV
- But	can	be	your	own	desktop…
- …	or	a	huge	cluster	running	a	parallel	dbms (later	assign.)

• Many	clients	run	apps	and	connect	to	DBMS
- E.g.	Microsoft’s	Management	Studio
- More	realistically	some	Java,	Python,	or	C++	program

• Clients	“talk”	to	server	using	some	protocol

45

DBMSs	we	will	work	with

• SQLlite
- most	widely	deployed	database	engine
- in	particular	with	embedded	systems,	browsers,	etc.,	e.g.,	Microsoft's	
Windows	Phone	8,	Apple's	iOS,	Skype,	Firefox

• PostgreSQL
- popular	and	powerful	open	source	database	(Microsoft)

46

SQLite	vs.	PostgreSQL

SQLlite
• open	source	&	cross-platform
• easy	to	install
• has	no	server	("embedded")
• ideal	for	single-user	application;	has	

limitations	when	it	comes	to	concurrency	
/	simultaneous	transactions	(one	writer	at	
a	time)

• does	not	allow	partitioning;	everything	is	
stored	in	one	single	file

• extra	functions	are	written	in	C/C++

PostgreSQL
• commercial	(Microsoft)
• takes	a	bit	longer	to	install
• uses	a	server
• ideal	for	shared	repository;	allows	

concurrency	(many	simultaneous	
transactions),	locking	and	fine-grained	
access	control

• scales	to	>GB	easily;	allows	partitioning	
(distributing)	the	data	across	several	files	
/	nodes

• supports	user-defined	functions

47

SQL overview

48

Key	constraints

• A	key	is	an	implicit	constraint	on	which	tuples	can	be	in	the	relation

- i.e.	if	two	tuples	agree	on	the	values	of	the	key,	then	they	must	be	the	same	tuple!

1.	Which	would	you	select	as	a	key?
2.	Is	a	key	always	guaranteed	to	exist?
3.	Can	we	have	more	than	one	key?

A	key is	a	minimal	subset	of	attributes that	acts	as	a	
unique	identifier	for	tuples	in	a	relation

Students(sid:string, name:string, gpa: float)

49

NULL	and	NOT	NULL

• To	say	“don’t	know	the	value”	we	use	NULL
- NULL	has	(sometimes	painful)	semantics,	more	detail	later

sid name gpa
123 Bob 3.9
143 Jim NULL Say,	Jim	just	enrolled	in	his	first	class.	

In	SQL,	we	may	constrain	a	column	to	be	NOT	NULL,	e.g.,	“name”	in	this	table

Students(sid:string, name:string, gpa: float)

50

General	Constraints

• We	can	actually	specify	arbitrary	assertions
- E.g.	“There	cannot	be	25	people	in	the	DB	class”

• In	practice,	we	don’t	specify	many	such	constraints.	Why?
- Performance!

Whenever	we	do	something	ugly	(or	avoid	doing	something	
convenient)	it’s	for	the	sake	of	performance

51

Summary	of	Schema	Information

• Schema	and	Constraints	are	how	databases	understand	the	semantics	
(meaning)	of	data

• They	are	also	useful	for	optimization

• SQL	supports	general	constraints:	
- Keys	and	foreign	keys	are	most	important
- We’ll	give	you	a	chance	to	write	the	others

52

Basic SQL

53

Simple	SQL	Query

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

SELECT pName
FROM Product
WHERE manufacturer in ('Canon','Hitachi')

Product

302

54

Simple	SQL	Query

PName
SingleTouch
MultiTouch

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

SELECT pName
FROM Product
WHERE manufacturer in ('Canon','Hitachi')

Product

Selection
& Projection

302

55

WHERE	...	IN	(...)										cp.	to	Excel

Assume that there is
a range defined for
A10:C18 called
"NameRange"

JFYI

56

WHERE	...	IN	(...)										cp.	to	Excel

Assume that there is
a range defined for
A10:C18 called
"NameRange"

JFYI

57

LIKE

58

LIKE:	Simple	String	Pattern	Matching

PName
Gizmo
Powergizmo

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

SELECT pName
FROM Product
WHERE pname LIKE '%izmo'

Product

% is a wildcard for any sequence of zero or more characters.

302

More	details:	http://www.techonthenet.com/sql_server/like.php

59

LIKE:	Simple	String	Pattern	Matching

PName
Gizmo

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

SELECT pName
FROM Product
WHERE pname LIKE '_izmo'

Product

302

_ is a wildcard for exactly one character.

More	details:	http://www.techonthenet.com/sql_server/like.php

60

Table	selection	using	comparison	predicates

= equal	to
< smaler than
<= smaller	or	equal	to
> greater	than
>= greater	or	equal	to
<> unequal	to

Simple	
comparators

Complex	
comparators

Comparators	that	
work	across	
types

IN	(value1,	value2,	…) any	values	within	the	given	set
IS	NULL has	no	value
IS	NOT	NULL has	a	value

Numbers

BETWEEN	value1 AND	value2
any	values	within	the	range

Text	/	Strings

= equal	to	(exact	string)

LIKE	 equal	to	(pattern)
‘S%’ string	starting	with	S
‘%S’ string	ending	with	S
‘%S%’ string	containing	an	S
‘S_S’ string	with	S	at	both	ends	
and	any	character	in	the	middle

Note:	Combinations	of	multiple	predicates	with	AND &	OR (use	brackets)

61

Date functions

62

Arithmetic	expressions

SELECT 3+2

SELECT (2*3 + 4*5) as name name
26

(no column name)
5

63

Date	functions	are	database-specific

This	is	here	SQLite	semantics
Date	functions	are	different	between	different	databases.	
In	real	life,	you	may	need	to	look	up	how	your	DB	handles	date	functions:
http://www.sqlite.org/lang_datefunc.html

Name Birthdate
Max 1980-01-01
Fred 1979-02-01
Susan 1990-01-31
Tilda 1988-01-01

Worker

age
33
34
23
25

SELECT date('now')-date(birthdate) as age
FROM Worker

We	can	specify	the	
output	column	names

JFYI

64

Joins

65

Keys	and	Foreign	Keys

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

Product

Company
CName StockPrice Country
GizmoWorks 25 USA
Canon 65 Japan
Hitachi 15 Japan

302

What	is	a	
foreign	key	vs.	
a	key	here?

66

Keys	and	Foreign	Keys

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks
Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

Product

Company
CName StockPrice Country
GizmoWorks 25 USA
Canon 65 Japan
Hitachi 15 Japan

Foreign
key

Key

Key

302

What	is	a	
foreign	key	vs.	
a	key	here?

67

Referential	Integrity
PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product Company
CName StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

Gizmo $14.99 Gadgets Hitachi

SuperTouch $249.99 Computer NewCom

violates	Key	constraint

violate Foreign
Key	constraint

Key	constraint:	minimal	subset	of	the	fields	of	a	
relation	is	a	unique	identifier	for	a	tuple.

Delete from	Company	
where	CName	=	'Canon';

Foreign	key:	must	match	field	in	a	relational	table	
that	matches	a	candidate	key	of	another	table

Insert into	Product	values	('Gizmo',	14.99,	'Gadgets',	'Hitachi');

Insert into	Product	values	('SuperTouch',	249.99,	'Computer',	'NewCom');

68

(Relational	Database)	Schema

Product
PName
Price
Category
Manufacturer

Company
Cname
Stockprice
Country

Product(pname,	price,	category,	manufacturer)
Company(cname,	stockprice,	country)

Product.manufacturer	is	FK	to	Company

"Schema":	describes	the	
structure	of	data	in	terms	of	
the	relational	data	model.

A	schema	includes	tables,	
columns,	PKs,	FKs,	and	other	
constraints

69

Joins

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product Company
CName StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

302Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

Q:	Find	all	products	under	$200	manufactured	in	Japan;
return	their	names	and	prices!

70

Joins

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product Company
CName StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

SELECT pName, price
FROM Product, Company
WHERE manufacturer=cName

and country='Japan'
and price <= 200

302Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

Q:	Find	all	products	under	$200	manufactured	in	Japan;
return	their	names	and	prices!

Join	b/w	Product	
and	Company

PName Price

SingleTouch $149.99

71

SELECT pName, StockPrice
FROM Product, Company
WHERE manufacturer=cName

and country = 'USA'

Quiz

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product Company
CName StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

302Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

What	does	the	query	below	return?

72

SELECT pName, StockPrice
FROM Product, Company
WHERE manufacturer=cName

and country = 'USA'

Quiz

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product Company
CName StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

302Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

What	does	the	query	below	return?

PName StockPrice

Gizmo 25

Powergizmo 25

73

Table	Alias	(Tuple	Variables)

SELECT DISTINCT pName, address
FROM Person, University
WHERE works_for = uName

Person (pName, address, works_for)
University (uName, address)

312

74

Table	Alias	(Tuple	Variables)

SELECT DISTINCT pName, address
FROM Person, University
WHERE works_for = uName

SELECT DISTINCT Person.pName, University.address
FROM Person, University
WHERE Person.works_for = University.uName

SELECT DISTINCT X.pName, Y.address
FROM Person as X, University Y
WHERE X.works_for = Y.uName

which address?
Error!

Note that "as" is optional !!

Person (pName, address, works_for)
University (uName, address)

312

75

L03:	SQL

76

Why	I	don't	post	slides	*before*	lecture

Source:	”Thinking	Physics:	Understanding	Practical	Reality”,	Lewis	Carroll	Epstein,	1979-2009.	
http://www.amazon.com/Thinking-Physics-Understandable-Practical-Reality/dp/0935218084

...

...

From	the	Preamble	of	one	of	the	best	physics	books	
there	is:	„How	to	read	this	book“

77

Studying	material:	"Under	which	study	condition	do	you	learn	better?"

Source:	Karpicke	&	Blunt,	"Retrieval	Practice	Produces	More	Learning	than	Elaborative	Studying	with	Concept	Mapping,"	Science,	2011.

Judged	performance
(=what	people	think)

Actual	performance
(=what	is	actually	working)

passive	reading active	Q&A

78
Source:	http://5.mshcdn.com/wp-content/gallery/the-year-2000-as-imagined-in-1900/future.jpg

The	year	2000	imagined	in	1900

79

Announcements!

• Textbooks	(v2):	link	to	Amazon	international	ed
• Python,	Jupyter
• Keep	up	the	great	class	interactions	J
• Microphone
• Continue	giving	feedback
• Talk	announcement	today	at	3pm

80

81

Table	Alias	(Tuple	Variables)

SELECT DISTINCT pName, address
FROM Person, University
WHERE works_for = uName

SELECT DISTINCT Person.pName, University.address
FROM Person, University
WHERE Person.works_for = University.uName

SELECT DISTINCT X.pName, Y.address
FROM Person as X, University Y
WHERE X.works_for = Y.uName

which address?
Error!

Note that "as" is optional !!

Person (pName, address, works_for)
University (uName, address)

312

82

Column	Alias	(rename	attributes)

SELECT DISTINCT X.pName, Y.address
FROM Person as X, University Y
WHERE X.works_for = Y.uName

Person (pName, address, works_for)
University (uName, address)

SELECT DISTINCT X.pName as name, Y.address adr
FROM Person as X, University Y
WHERE X.works_for = Y.uName

312

83

SELECT cName
FROM
WHERE

Quiz	2

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product Company
CName StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

302Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

Q:	Find	all	US	companies	that	manufacture	
products	in	the	'Gadgets'	category!

84

SELECT cName
FROM Product P, Company
WHERE country = 'USA'

and P.category = 'Gadgets'
and P.manufacturer = cName

Quiz	2

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product Company
CName StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

302Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

Q:	Find	all	US	companies	that	manufacture	
products	in	the	'Gadgets'	category!

Cname

GizmoWorks

GizmoWorks

85

SELECT DISTINCT cName
FROM Product P, Company
WHERE country = 'USA'

and P.category = 'Gadgets'
and P.manufacturer = cName

Quiz	2

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product Company
CName StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

302Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

Q:	Find	all	US	companies	that	manufacture	
products	in	the	'Gadgets'	category!

Cname

GizmoWorks

86

Quiz	3

SELECT DISTINCT cName
FROM
WHERE

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

Q: Find all US companies that manufacture both a product
below $20 and a product above $25.

302

87

Quiz	3

Q: Find all US companies that manufacture both a product
below $20 and a product above $25.

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

SELECT DISTINCT cName
FROM Product as P, Company
WHERE country = 'USA'

and P.price < 20
and P.price > 25
and P.manufacturer = cName

Wrong! Gives empty
result: There is no
product with price
<20 and >25

302

88

Quiz	3

P.price < 20 and
P.price > 25

Q: Find all US companies that manufacture both a product
below $20 and a product above $25.

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

C

P

not possible!
-> Empty result

P.price < 20

C

P1

P2 P.price > 25

302

89

Quiz	3

Q: Find all US companies that manufacture both a product
below $20 and a product above $25.

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

SELECT DISTINCT cName
FROM Product as P, Company
WHERE country = 'USA'

and (P.price < 20
or P.price > 25)
and P.manufacturer = cName

Returns companies
with single product
w/price (<20 or >25)

P.price<20 or
P.price>25

C

P

302

90

Quiz	3

Q: Find all US companies that manufacture both a product
below $20 and a product above $25.

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

SELECT DISTINCT cName
FROM Product as P1, Product as P2, Company
WHERE country = 'USA'

and P1.price < 20
and P2.price > 25
and P1.manufacturer = cName
and P2.manufacturer = cName

302

91

Quiz	3
PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

...

P1

Company
CName StockPrice Country

GizmoWorks 25 USA

...

Cname

GizmoWorks

PName Price Category Manufacturer

...

Powergizmo $29.99 Gadgets GizmoWorks

P2

SELECT DISTINCT cName
FROM Product as P1, Product as P2, Company
WHERE country = 'USA'

and P1.price < 20
and P2.price > 25
and P1.manufacturer = cName
and P2.manufacturer = cName

302

92

Meaning	(Semantics)	of	conjunctive	SQL	Queries

Answer = {}
for x1 in R1 do

for x2 in R2 do
…..

for xn in Rn do
if Conditions

then Answer = Answer È {(a1,…,ak)}
return Answer

SELECT a1, a2, …, ak
FROM R1 as x1, R2 as x2, …, Rn as xn
WHERE Conditions

Conceptual evaluation strategy (nested for loops):

93

Meaning	(Semantics)	of	conjunctive	SQL	Queries

Answer = {}
for x1 in R1 do

for x2 in R2 do
…..

for xn in Rn do
if Conditions

then Answer = Answer È {(a1,…,ak)}
return Answer

att1 att2 ... attk
...

...

...

...

R1
att1 att2 ... attk
...

...

...

...

R2
att1 att2 ... attk
...

...

...

...

R3

94

Conceptual	Evaluation	Strategy

• Semantics	of	an	SQL	query	defined	in	terms	of	the	following	
conceptual	evaluation	strategy:
- FROM:	Compute	the	cross-product	of	relation-list.
- WHERE:	Discard	resulting	tuples	if	they	fail	qualifications.
- SELECT:	Delete	attributes	that	are	not	in	target-list.
- If	DISTINCT	is	specified,	eliminate	duplicate	rows.

• This	strategy	is	probably	the	least	efficient	way	to	compute	a	query!		
An	optimizer	will	find	more	efficient	strategies	to	compute	the	same	
answers.

95

E.LastName E.DepartmentID D.DepartmentID D.DepartmentName
Robinson 34 34 Clerical
Jones 33 33 Engineering
Smith 34	 34	 Clerical
Steinberg 33 33 Engineering
Rafferty 31 31 Sales

Inner	Joins
LastName DepartmentID
Rafferty 31
Jones 33
Steinberg 33
Robinson 34
Smith 34

DepartmentID DepartmentName
31 Sales
33 Engineering
34 Clerical
35 Marketing

Employee Department

SELECT *
FROM Employee E, Department D
WHERE E.DepartmentID = D. DepartmentID

Source:	http://en.wikipedia.org/wiki/Join_(SQL)#Cross_join

344

96

E.LastName E.DepartmentID D.DepartmentID D.DepartmentName
Rafferty 31 31 Sales
Jones 33 31 Sales
Steinberg 33 31 Sales
Smith 34 31 Sales
Robinson 34 31 Sales
Rafferty 31 33 Engineering
Jones 33 33 Engineering
Steinberg 33 33 Engineering
Smith 34 33 Engineering
Robinson 34 33 Engineering
Rafferty 31 34 Clerical
Jones 33 34 Clerical
Steinberg 33 34 Clerical
Smith 34 34 Clerical
Robinson 34 34 Clerical
Rafferty 31 35 Marketing
Jones 33 35 Marketing
Steinberg 33 35 Marketing
Smith 34 35 Marketing
Robinson 34 35 Marketing

Cross	Joins:	usually	not	what	you	want	L
LastName DepartmentID
Rafferty 31
Jones 33
Steinberg 33
Robinson 34
Smith 34

DepartmentID DepartmentName
31 Sales
33 Engineering
34 Clerical
35 Marketing

Employee Department

SELECT *
FROM Employee E, Department D
WHERE E.DepartmentID = D. DepartmentID

344

97

Definitions	(for	job	interviews?)

• An	equi-join is	a	join	in	which	the	joining	condition	is	based	on	
equality	between	values	in	the	common	columns;	common	columns	
appear	redundantly	in	the	result	table

• A	natural	join is	an	equi-join	in	which	one	of	the	duplicate	columns	
is	eliminated	in	the	result	table

• A	cross	join returns	the	Cartesian	product	of	rows	from	tables	in	the	
join	
- (i.e.	it	will	produce	rows	which	combine	each	row	from	the	first	table	with	
each	row	from	the	second	table,	that's	usually	*not*	what	you	want)

98

Definitions	(for	job	interviews?)
Equi-join
E.LastName E.DepartmentID D.DepartmentID D.DepartmentName
Robinson 34 34 Clerical
Jones 33 33 Engineering
Smith 34	 34	 Clerical
Steinberg 33 33 Engineering
Rafferty 31 31 Sales

E.LastName DepartmentID D.DepartmentName
Robinson 34 Clerical
Jones 33 Engineering
Smith 34	 Clerical
Steinberg 33 Engineering
Rafferty 31 Sales

Natural join

Cross join
E.LastName E.DepartmentID D.DepartmentID D.DepartmentName

Rafferty 31 31 Sales
Jones 33 31 Sales
Steinberg 33 31 Sales
Smith 34 31 Sales
Robinson 34 31 Sales
Rafferty 31 33 Engineering

...

99

Alternative	JOIN	Syntax
LastName DepartmentID
Rafferty 31
Jones 33
Steinberg 33
Robinson 34
Smith 34

DepartmentID DepartmentName
31 Sales
33 Engineering
34 Clerical
35 Marketing

Employee Department

SELECT *
FROM Employee E, Department D
WHERE E.DepartmentID = D. DepartmentID
AND E.DepartmentID = 34

SELECT *
FROM Employee E JOIN Department D

ON E.DepartmentID = D. DepartmentID
WHERE E.DepartmentID = 34

E.LastName E.DepartmentID D.DepartmentID D.DepartmentName
Robinson 34 34 Clerical
Smith 34	 34	 Clerical

344

100

NATURAL	JOIN	Syntax
LastName DepartmentID
Rafferty 31
Jones 33
Steinberg 33
Robinson 34
Smith 34

DepartmentID DepartmentName
31 Sales
33 Engineering
34 Clerical
35 Marketing

Employee Department

SELECT *
FROM Employee E, Department D
WHERE E.DepartmentID = D. DepartmentID
AND E.DepartmentID = 34

SELECT *
FROM Employee E NATURAL JOIN Department D

WHERE E.DepartmentID = 34

LastName DepartmentID DepartmentName
Robinson 34 Clerical
Smith 34	 Clerical

344

Syntax is not
supported by all
DBMS's

101

Using	the	Formal	Semantics

SELECT DISTINCT R.a
FROM R, S, T
WHERE R.a=S.a

or R.a=T.a

Returns R Ç (S È T)
if S ≠ ∅ and T ≠ ∅

What do these queries compute?

SELECT DISTINCT R.a
FROM R, S
WHERE R.a=S.a

Returns R Ç S
(intersection)

T
a

2

a

1

a

1

2

305

R
a

1

2

S
a

1

R(a), S(a), T(a)

102

305Using	the	Formal	Semantics

SELECT DISTINCT R.a
FROM R, S, T2 as T
WHERE R.a=S.a

or R.a=T.a

Returns ∅
if S = ∅ or T = ∅

What do these queries compute?

SELECT DISTINCT R.a
FROM R, S
WHERE R.a=S.a

Returns R Ç S
(intersection)

Can seem counterintuitive! But remember conceptual evaluation
strategy: Nested loops. If one table is empty -> no looping

R
a

1

2

S
a

1

T2
a

R(a), S(a), T2(a)

a

1

a

103

Illustration	with	Python

The	comparison	gets	never	evaluated

305

104

1. Aggregates
2. Groupings
3. Having

105

Aggregation

SELECT count(*)
FROM Car
WHERE price > 100

Except	count,	all	aggregations	apply	to	a	single	attribute

SELECT avg(price)
FROM Car
WHERE maker='Toyota'

SQL	supports	several	aggregation	operations:

sum,	count,	min,	max,	avg

348Car (name, price, maker)

106

Aggregation

SELECT avg(price)
FROM Car
WHERE maker='Toyota'

Car
Name Price Maker
M3 120 BMW
M5 150 BMW
Prius 50 Toyota
Lexus1 75 Toyota
Lexus2 100 Toyota

(No column name)
75

Database creates new attribute
name (for SQLserver)

348

107

Aggregation	with	rename

SELECT count(*) as n
FROM Car
WHERE price > 100

Name Price Maker
M3 120 BMW
M5 150 BMW
Prius 50 Toyota
Lexus1 75 Toyota
Lexus2 100 Toyota

n
2

Car

Database creates *our*
new attribute name

348

"as" optional

108

SELECT count(maker)
FROM Car
WHERE price > 100

Aggregation:	Count	Distinct

Name Price Maker
M3 120 BMW
M5 150 BMW
Prius 50 Toyota
Lexus1 75 Toyota
Lexus2 100 Toyota

Car
348

We probably want to ignore duplicates:

SELECT count(DISTINCT maker)
FROM Car
WHERE price > 100

Same as count(*)

(No column name)
1

109

Simple	Aggregation	1/3

SELECT sum(price * quantity)
FROM Purchase

Purchase (product, price, quantity)

SELECT sum(price * quantity)
FROM Purchase
WHERE product = 'Bagel'

What do these
queries mean?

308

110

Simple	Aggregation	2/3
Purchase

SELECT sum(price * quantity)
FROM Purchase
WHERE product = 'Bagel'

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

3 * 20 = 60
2 * 20 = 40

sum: 100

(No column name)
100

Database creates
new attribute name

308

111

Simple	Aggregation	3/3
Purchase

SELECT sum(price) * sum(quantity)
FROM Purchase
WHERE product = 'Bagel'

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

3
2

sum: 5 *

(No column name)
200

308

20
20

sum: 40 = 200

112

Grouping	and	Aggregation

Product TotalSales
Bagel 40
Banana 20

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

Find total quantities for all purchases with price over $1
grouped by product.

Purchase
308

Notice: we use "sales" for
total number of products sold

113

From	®Where	® Group	By	® Select

SELECT product, sum(quantity) as TotalSales
FROM Purchase
WHERE price > 1
GROUP BY product

Product TotalSales
Bagel 40
Banana 20

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

1
2
3

4

Select contains
• grouped attributes
• and aggregates

Purchase
308

114

Let's	confuse	the	database	engine

SELECT product, quantity
FROM Purchase
GROUP BY product

Product Quantity
Bagel ?
Banana ?

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

What	quantity	should	the	
DB	return	for	Banana?

The	DB	engine	is	confused,	there	
is	no	single	quantity	for	banana	
(it's	an	ill-defined	query).	It	
should	thus	return	an	error	(only	
SQLite	misbehaves	and	returns	
something,	but	which	makes	no	
sense).	Please	think	this	through	
carefully!

Purchase
308

115

Groupings	illustrated	with	colored	shapes

SELECT color,
avg(numc) anc

FROM Shapes
GROUP BY color

group	by	color group	by	numc	(#	of	corners)

color anc
blue 4
orange 5

SELECT numc
FROM Shapes
GROUP BY numc

numc
3
4
5
6

116

Another	Example

SELECT product,
sum(quantity) as SumQ,
max(price) as MaxP

FROM Purchase
GROUP BY product

Product SumQ MaxP
Bagel 40 3
Banana 70 4

Next, focus only on
products with at
least 50 sales

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

Purchase
308

117

Having	Clause

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

SELECT product,
sum(quantity) as SumQ,
max(price) as MaxP

FROM Purchase
GROUP BY product
HAVING sum(quantity) > 50

Q: Similar to before, but only products with at least 50 sales.

Product SumQ MaxP
Banana 70 4

308

118

Quizz

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

SELECT product, sum(quantity) as SumQ
FROM Purchase
WHERE quantity > 15
GROUP BY product
HAVING sum(quantity) > 40

What does this query return over the given database?

Product SumQ
Bagel 40
Banana 50

308

119

SELECT S
FROM R1,…,Rn

WHERE C1
GROUP BY a1,…,ak

HAVING C2

Evaluation
1. Evaluate	FROM
2. WHERE,	apply	condition	C1
3. GROUP	BY	the	attributes	a1,…,ak
4. Apply	condition	C2	to	each	group	(may	have	aggregates)
5. Compute	aggregates	in	S	and	return	the	result

1
2
3
4

5

C1: is any condition on the attributes in
R1,…,Rn

C2: is any condition on aggregates and
on attributes a1,…,ak

S: may contain attributes a1,…,ak and/or
any aggregates but no other attributes

General	form	of	Grouping	and	Aggregation

120

SELECT S
FROM R1,…,Rn

WHERE C1
GROUP BY a1,…,ak

HAVING C2
ORDER BY S2

Evaluation
1. Evaluate	FROM
2. WHERE,	apply	condition	C1
3. GROUP	BY	the	attributes	a1,…,ak
4. Apply	condition	C2	to	each	group	(may	have	aggregates)
5. Compute	aggregates	in	S	and	return	the	result
6. Sort	rows	by	ORDER	BY	clause

1
2
3
4

5

C1: is any condition on the attributes in
R1,…,Rn

C2: is any condition on aggregates and
on attributes a1,…,ak

S: may contain attributes a1,…,ak and/or
any aggregates but no other attributes

General	form	of	SQL	Query

6
The logical order is useful for under-
standing, but not always correct. The
ANSI SQL standard does not require
a specific processing order and
leaves that to the implementation.
Recall our intro example with
SELECT DISTINCT and order by!
Notice that that example can't be
explained with the order shown here

121

Conceptual	Evaluation	Strategy

• The	cross-product	of	relation-list	is	computed	(FROM),	tuples	that	
fail	qualification	are	discarded	(WHERE),	then:

• GROUP	BY:	the	remaining	tuples	are	partitioned	into	groups	by	the	
value	of	attributes	in	grouping-list.		

• HAVING:	The	group-qualification	is	then	applied	to	eliminate	some	
groups.		Expressions	in	group-qualification	must	have	a	single	value	
per	group!
- In	effect,	an	attribute	in	group-qualification	that	is	not	an	argument	of	an	
aggregate	op	must	also	appear	in	grouping-list.		(SQL	does	not	exploit	
primary	key	semantics	here!)

• One	answer	tuple	is	generated	per	qualifying	group.

122

Don't	use	new	Alias	in	HAVING	clause

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

SELECT product, sum(quantity) as SumQ
FROM Purchase
WHERE quantity > 15
GROUP BY product
HAVING SumQ > 35

What does this query return over the given database?

Product SumQ
Bagel 40
Banana 50

Error in SQL server!
Reason: HAVING is
evaluated before SELECT!
(However, SQLite works:
different implementation)

Source:	http://stackoverflow.com/questions/2068682/why-cant-i-use-alias-in-a-count-column-and-reference-it-in-a-having-clause

308

123

Don't	use	new	Alias	in	HAVING	clause

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

SELECT product, sum(quantity) as SumQ
FROM Purchase
WHERE quantity > 15
GROUP BY product
HAVING sum(quantity) > 35
ORDER BY sumQ desc

What does this query return over the given database?

Product SumQ
Banana 50
Bagel 40

308

Works! Notice
that new sorting

124

L04:	SQL

125

Announcements!

• Polls	on	Piazza.	Open	for	2	days
• Outline	today:	
- practicing	more	joins	and	specifying	key	and	FK	constraints
- nested	queries

• Next	time:	"witnesses"	(traditionally	students	find	this	topic	the	most	difficult)	

126

Queries	via	SQL	have	multiple	words:	If	you	master	this	
structure	you	know	50%	about	SQL	Queries

SELECT …
FROM …
WHERE …
GROUP BY …
HAVING …
ORDER BY …

• List	of	attributes to	be	included	in	final	result	(also	
called	projection!	("*"	selects	all	attributes)

• Indicates	the	table(s)	from	which	data	is	to	be	
retrieved

• Lists	a	comparison	predicate,	which	restricts	the	
rows	returned	by	the	query,	e.g.	“price	<	20”
or	different	join conditions

• Groups rows	that	have	one	more	common	values	
together	into	a	smaller	set	of	rows

• A	comparison	predicate used	to	restrict	the	rows	
resulting	from	the	GROUP	BY clause

• Identifies	which	columns are	used	to	sort	the	
resulting	data,	plus	the	direction each	column	is	
sorted	by	(ascending	or	descending)

Note1 :	SQL	is	generally		
case	insensitive,	e.g.	SELECT		

=	Select	=	select

Note2 :	The	words	always	
appear	in	this	order	– you	
CANNOT	reorder	them

127

How	to	specify	Foreign	Key	constraints

• Suppose	we	have	the	following	schema:

• And	we	want	to	impose	the	following	constraint:
- ‘Only	bona	fide	students	may	enroll	in	courses’	i.e.	a	student	must	appear	in	the	

Students	table	to	enroll	in	a	class

student_id alone	is	not	a	
key- what	is?

sid name gpa

101 Bob 3.2

123 Mary 3.8

student_id cid grade

123 564 A

123 537 A+

Students Enrolled

We	say	that	student_id is	a	foreign	key that	refers	to	Students

Students(sid: string, name: string, gpa: float)
Enrolled(student_id: string, cid: string, grade: string)

128

Declaring	Primary	Keys

CREATE TABLE Students(
sid CHAR(20) PRIMARY KEY,
name CHAR(20),
gpa REAL

)

Students(sid: string, name: string, gpa: float)
Enrolled(student_id: string, cid: string, grade: string)

129

Declaring	Primary	Keys

CREATE TABLE Students(
sid CHAR(20),
name CHAR(20),
gpa REAL,
PRIMARY KEY (sid)

)

Students(sid: string, name: string, gpa: float)
Enrolled(student_id: string, cid: string, grade: string)

130

Declaring	Foreign	Keys

CREATE TABLE Enrolled(
student_id CHAR(20),
cid CHAR(20),
grade CHAR(10),

)

Students(sid: string, name: string, gpa: float)
Enrolled(student_id: string, cid: string, grade: string)

PRIMARY KEY (student_id, cid),
FOREIGN KEY (student_id) REFERENCES Students(sid)

131

An	example	of	SQL	semantics

SELECT R.A
FROM R, S
WHERE R.A = S.B

A
1
3

B C
2 3
3 4
3 5

A B C
1 2 3
1 3 4
1 3 5
3 2 3
3 3 4
3 3 5

Cross	
Product

A B C
3 3 4
3 3 5

A
3
3

Apply	
ProjectionApply	

Selections	/	
Conditions

Output

132

Note	the	semantics	of	a	join
SELECT R.A
FROM R, S
WHERE R.A = S.B

Recall:	Cross	product	(A	X	B)	is	the	set	of	all	
unique	tuples	in	A,B

Ex:	{a,b,c}	X	{1,2}	
=	{(a,1),	(a,2),	(b,1),	(b,2),	(c,1),	(c,2)}

=	Filtering!

=	Returning	only	some attributes

Remembering	this	order	is	critical	to	understanding	the	
output	of	certain	queries	(see	later	on…)

1. Take	cross	product:
𝑋 = 𝑅×𝑆

2. Apply	selections	/	conditions:
𝑌 = 𝑟, 𝑠 ∈ 𝑋	 	𝑟. 𝐴 = 𝑟. 𝐵}

3. Apply	projections to	get	final	output:
𝑍 = (𝑦. 𝐴,)	𝑓𝑜𝑟	𝑦 ∈ 𝑌

133

Note:	we	say	“semantics”	not	“execution	order”

• The	preceding	slides	show	what	a	join	means

• Not	actually	how	the	DBMS	executes	it	under	the	covers

134

Practicing more Joins

135

Quiz	4

SELECT DISTINCT cName
FROM
WHERE

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

Q: Find all US companies that manufacture at least two
different products.

302

136

Quiz	4

Q: Find all US companies that manufacture at least two
different products.

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

SELECT DISTINCT cName
FROM Product P1, Product P2, Company
WHERE country = 'USA'

and P1.manufacturer = cName
and P2.manufacturer = cName
and P1.pName <> P2.pName <>

C

P1

P2

302

137

Quiz	4
PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

...

P1

Company
CName StockPrice Country

GizmoWorks 25 USA

...

Cname

GizmoWorks

PName Price Category Manufacturer

...

Powergizmo $29.99 Gadgets GizmoWorks

P2

SELECT DISTINCT cName
FROM Product P1, Product P2, Company
WHERE country = 'USA'

and P1.manufacturer = cName
and P2.manufacturer = cName
and P1.pName <> P2.pName

<>

302

138

Quiz	5

Q: Find all US companies that manufacture a product
below $20 and a product above $15.

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

SELECT DISTINCT cName
FROM Product as P1, Product as P2, Company
WHERE country = 'USA'

and P1.price < 20
and P2.price > 15
and P1.manufacturer = cName
and P2.manufacturer = cName

PName Price Category Manufacturer

Gizmo 19.99 Gadgets GizmoWorks

Powergizmo 29.99 Gadgets GizmoWorks

SingleTouch 149.99 Photography Canon

MultiTouch 203.99 Household Hitachi

Product

Company
CName StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

302

139

Quiz	5

Q: Find all US companies that manufacture a product
below $20 and a product above $15.

Product (pName, price, category, manufacturer)
Company (cName, stockPrice, country)

P.price > 15

C

P1

P2 P.price < 20

Note that we did not
specify any condition that
P1 and P2 need to be
distinct. An alternative
interpretation is "...and
another product above..."

302

140

Quiz	5
PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

...

P1

Company
CName StockPrice Country

GizmoWorks 25 USA

...

Cname

GizmoWorks

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

...

P2

SELECT DISTINCT cName
FROM Product as P1, Product as P2, Company
WHERE country = 'USA'

and P1.price < 20
and P2.price > 15
and P1.manufacturer = cName
and P2.manufacturer = cName

302

141

Quiz	6 302

?
SELECT country
FROM Product, Company
WHERE manufacturer = cName

and category = 'Gadgets'

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product Company
CName StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

Q:	Find	all	countries	that	have	companies	that	manufacture	
some	product	in	the	‘Gadgets’	category!

142

Quiz	6

PName Price Category Manufacturer

Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks

SingleTouch $149.99 Photography Canon

MultiTouch $203.99 Household Hitachi

Product Company
CName StockPrice Country

GizmoWorks 25 USA

Canon 65 Japan

Hitachi 15 Japan

302

Q:	Find	all	countries	that	have	companies	that	manufacture	
some	product	in	the	‘Gadgets’	category!

SELECT country
FROM Product, Company
WHERE manufacturer = cName

and category = 'Gadgets'

Country

USA

USA

Joins can introduce duplicates -> remember to use DISTINCT!

143

Nested queries
(Subqueries)

144

High-level	note	on	nested	queries

• We	can	do	nested	queries	because	SQL	is	compositional:

- Everything	(inputs	/	outputs)	is	represented	as	multisets- the	output	of	one	query	can	
thus	be	used	as	the	input	to	another	(nesting)!

• This	is	extremely	powerful!

• High-level	idea:	subqueries	return	relations	(yet	sometimes	just	values)

145

Subqueries	=	Nested	queries

SELECT ...
FROM ...
WHERE ...

(SELECT ...
FROM ...
WHERE ...)

Outer	block

Inner	block

146

Subqueries

important!

• A	subquery	is	a	SQL	query	nested	inside	a	larger	query
• Such	inner-outer	queries	are	called	nested	queries
• A	subquery	may	occur	in	a:
- SELECT	clause
- FROM	clause
- WHERE	clause
- HAVING	clause

• Rule	of	thumb:	avoid	writing	nested	queries	when	possible;	keep	in	
mind	that	sometimes	it’s	impossible

147

1.	Subqueries	in	SELECT

What happens if the subquery returns more than one city ?
Runtime error

Q: For each product return the city where it is manufactured!

SELECT P.pname, (SELECT C.city
FROM Company2 C
WHERE C.cid = P.cid)

FROM Product2 P

Product2 (pname, price, cid)
Company2 (cid, cname, city)

® "Scalar subqueries"

315

148

1.	Subqueries	in	SELECT

Q: For each product return the city where it is manufactured!

SELECT P.pname, C.city
FROM Product2 P, Company2 C
WHERE C.cid = P.cid

"unnesting the query" Whenever possible,
don't use nested queries

SELECT P.pname, (SELECT C.city
FROM Company2 C
WHERE C.cid = P.cid)

FROM Product2 P

Product2 (pname, price, cid)
Company2 (cid, cname, city)

315

149

1.	Subqueries	in	SELECT

Better: we can unnest
by using a GROUP BY:

Q: Compute the number of products made by each company!

SELECT C.cname, (SELECTcount (*)
FROM Product2 P
WHERE P.cid = C.cid)

FROM Company2 C

Product2 (pname, price, cid)
Company2 (cid, cname, city)

SELECT C.cname, count(*)
FROM Company2 C, Product2 P
WHERE C.cid=P.cid
GROUP BY C.cname

315

150

2.	Subqueries	in	FROM	clause

Q: Find all products whose prices are > 20 and < 30!

SELECT X.pname
FROM (SELECT *

FROM Product2 as P
WHERE price >20) as X

WHERE X.price < 30

SELECT pname
FROM Product2
WHERE price > 20 and price < 30

unnesting

Product2 (pname, price, cid)
Company2 (cid, cname, city)

X
PName Price cid

Powergizmo $29.99 1

MultiTouch $203.99 3

315

151

Subqueries in
WHERE clause

IN, ANY, ALL

152

3.	Subqueries	in	WHERE	
What do these queries compute?

SELECT a
FROM R
WHERE a IN

(SELECT * from U)
?

305R
a
1
2

SELECT a
FROM R
WHERE a < ANY

(SELECT * from U)

SELECT a
FROM R
WHERE a < ALL

(SELECT * from U)

U
a
2
3
4

?

?

153

3.	Subqueries	in	WHERE	
What do these queries compute?

SELECT a
FROM R
WHERE a IN

(SELECT * from U)

Since 2 is in the set
(2, 3, 4)

a
2

305R
a
1
2

SELECT a
FROM R
WHERE a < ANY

(SELECT * from U)

a
1
2

SELECT a
FROM R
WHERE a < ALL

(SELECT * from U)

a
1

U
a
2
3
4

Since 1 and 2 are <
than at least one
("any") of 2, 3 or 4

Since 1 is < than
each ("all") of 2, 3,
and 4

154

Something	tricky	about	Nested	Queries

SELECT c.city
FROM Company c,

Product pr,
Purchase p

WHERE c.name = pr.maker
AND pr.name = p.product
AND p.buyer = ‘Joe B’

Are	these	queries	equivalent?

Beware	of	duplicates!	

SELECT c.city
FROM Company c
WHERE c.name IN (
SELECT pr.maker
FROM Purchase p, Product pr
WHERE p.name = pr.product

AND p.buyer = ‘Joe B‘)

155

Something	tricky	about	Nested	Queries

SELECT DISTINCT c.city
FROM Company c,

Product pr,
Purchase p

WHERE c.name = pr.maker
AND pr.name = p.product
AND p.buyer = ‘Joe B’

Are	these	queries	equivalent?

SELECT DISTINCT c.city
FROM Company c
WHERE c.name IN (
SELECT pr.maker
FROM Purchase p, Product pr
WHERE p.name = pr.product

AND p.buyer = ‘Joe B‘)

Now	they	are	equivalent	(both	use	set	semantics)

156

Correlated	subqueries

• In	all	previous	cases,	the	nested	subquery	in	the	inner	select	block	
could	be	entirely	evaluated	before	processing	the	outer	select	block.		

• This	is	no	longer	the	case	for	correlated	nested	queries.		
• Whenever	a	condition	in	the	WHERE	clause	of	a	nested	query	
references	some	column	of	a	table	declared	in	the	outer	query,	the	
two	queries	are	said	to	be	correlated.		

• The	nested	query	is	then	evaluated	once	for	each	tuple	(or	
combination	of	tuples)	in	the	outer	query.	

157

Correlated	Queries	(Using	External	Vars in	Internal	Subquery)

SELECT DISTINCT title
FROM Movie AS m
WHERE year <> ANY(

SELECT year
FROM Movie
WHERE title = m.title)

Movie(title, year, director, length)

Note	also:	this	can	still	be	expressed	as	single	SFW	query…

Find	movies	whose	
title	appears	in	more	
than	one	year.

Note	the	scoping	
of	the	variables!

158

Complex	Correlated	Query

SELECT DISTINCT x.name, x.maker
FROM Product AS x
WHERE x.price > ALL(

SELECT y.price
FROM Product AS y
WHERE x.maker = y.maker

AND y.year < 1972)

Find	products	(and	their	
manufacturers)	that	are	
more	expensive	than	all	
products	made	by	the	
same	manufacturer	
before	1972

Product(name, price, category, maker, year)

Can	be	very	powerful	(also	much	harder	to	optimize)

159

3.	Subqueries	in	WHERE	(existential)

Existential quantifiers $

Using IN:

Q: Find all companies that make some products with price < 25!

SELECT DISTINCT C.cname
FROM Company2 C
WHERE C.cid IN (1, 2)

Product2 (pname, price, cid)
Company2 (cid, cname, city)

PName Price cid

Gizmo $19.99 1

Powergizmo $29.99 1

SingleTouch $14.99 2

MultiTouch $203.99 3

cid CName City

1 GizmoWorks Oslo

2 Canon Osaka

3 Hitachi Kyoto

315

160

3.	Subqueries	in	WHERE	(existential)

Existential quantifiers $

Using IN:

Q: Find all companies that make some products with price < 25!

SELECT DISTINCT C.cname
FROM Company2 C
WHERE C.cid IN (SELECT P.cid

FROM Product2 P
WHERE P.price < 25)

Product2 (pname, price, cid)
Company2 (cid, cname, city)

PName Price cid

Gizmo $19.99 1

Powergizmo $29.99 1

SingleTouch $14.99 2

MultiTouch $203.99 3

cid CName City

1 GizmoWorks Oslo

2 Canon Osaka

3 Hitachi Kyoto

315

"Set membership"

161

3.	Subqueries	in	WHERE	(existential)

Existential quantifiers $

Using EXISTS:

Q: Find all companies that make some products with price < 25!

SELECT DISTINCT C.cname
FROM Company2 C
WHERE EXISTS (SELECT *

FROM Product2 P
WHERE C.cid = P.cid

and P.price < 25)

Product2 (pname, price, cid)
Company2 (cid, cname, city)

PName Price cid

Gizmo $19.99 1

Powergizmo $29.99 1

SingleTouch $14.99 2

MultiTouch $203.99 3

cid CName City

1 GizmoWorks Oslo

2 Canon Osaka

3 Hitachi Kyoto

315

"Test for empty relations"

Correlated subquery

162

3.	Subqueries	in	WHERE	(existential)

Existential quantifiers $

Using ANY (also some):

Q: Find all companies that make some products with price < 25!

SELECT DISTINCT C.cname
FROM Company2 C
WHERE 25 > ANY (SELECT price

FROM Product2 P
WHERE P.cid = C.cid)

Product2 (pname, price, cid)
Company2 (cid, cname, city)

SQLlite does not support "ANY" L

PName Price cid

Gizmo $19.99 1

Powergizmo $29.99 1

SingleTouch $14.99 2

MultiTouch $203.99 3

cid CName City

1 GizmoWorks Oslo

2 Canon Osaka

3 Hitachi Kyoto

315

"Set comparison"

Correlated subquery

163

3.	Subqueries	in	WHERE	(existential)

Existential quantifiers $

Now, let's unnest:

Q: Find all companies that make some products with price < 25!

SELECT DISTINCT C.cname
FROM Company2 C, Product2 P
WHERE C.cid = P.cid

and P.price < 25

Existential quantifiers are easy ! J

Product2 (pname, price, cid)
Company2 (cid, cname, city)

PName Price cid

Gizmo $19.99 1

Powergizmo $29.99 1

SingleTouch $14.99 2

MultiTouch $203.99 3

cid CName City

1 GizmoWorks Oslo

2 Canon Osaka

3 Hitachi Kyoto

315

164

3.	Subqueries	in	WHERE	(universal)

Universal quantifiers "

Q: Find all companies that make only products with price < 25!

Q: Find all companies for which all products have price < 25!

Universal quantifiers are more complicated ! L
(Think about the companies that should not be returned)

same as:

Product2 (pname, price, cid)
Company2 (cid, cname, city)

315

165

3.	Subqueries	in	WHERE	(exist	not	->	universal)

2. Find all companies s.t. all their products have price < 25!

1. Find the other companies: i.e. they have some product ³ 25!

SELECT DISTINCT C.cname
FROM Company2 C
WHERE C.cid IN (SELECT P.cid

FROM Product2 P
WHERE P.price >= 25)

SELECT DISTINCT C.cname
FROM Company2 C
WHERE C.cid NOT IN (SELECT P.cid

FROM Product2 P
WHERE P.price >= 25)

Q: Find all companies that make only products with price < 25!
315

166

3.	Subqueries	in	WHERE	(exist	not	->	universal)

Using NOT EXISTS:

SELECT DISTINCT C.cname
FROM Company2 C
WHERE NOT EXISTS (SELECT *

FROM Product2 P
WHERE C.cid = P.cid

and P.price >= 25)

Universal quantifiers "

Q: Find all companies that make only products with price < 25!

Product2 (pname, price, cid)
Company2 (cid, cname, city)

315

167

3.	Subqueries	in	WHERE	(exist	not	->	universal)

Using ALL:

Universal quantifiers "

Q: Find all companies that make only products with price < 25!

SELECT DISTINCT C.cname
FROM Company2 C
WHERE 25 > ALL (SELECT price

FROM Product2 P
WHERE P.cid = C.cid)

Product2 (pname, price, cid)
Company2 (cid, cname, city)

SQLlite does not support "ALL" L

315

168

Question	for	Database	Fans	&	Friends

• How	can	we	unnest	the	universal	quantifier	query	?

This	topic	goes	beyond	the	
course	objectives;	only	for	

those	who	are	really	interested

169

Queries	that	must	be	nested

• Definition:	A	query	Q	is	monotone	if:
- Whenever	we	add	tuples	to	one	or	more	of	the	tables…
- …	the	answer	to	the	query	cannot	contain	fewer	tuples

• Fact:		all	unnested	queries	are	monotone	
- Proof:	using	the	"nested	for	loops"	semantics

• Fact:	Query	with	universal	quantifier	is	not	monotone
- Add	one	tuple	violating	the	condition.	Then	"all"	returns	fewer	tuples

• Consequence:	we	cannot	unnest	a	query	with	a	universal	quantifier

This	topic	goes	beyond	the	
course	objectives;	only	for	

those	who	are	really	interested

170

The	drinkers-bars-beers	example

Find drinkers that frequent some bar that serves some beer they like.

Find drinkers that frequent only bars that serve some beer they like.

Find drinkers that frequent only bars that serve only beer they like.

x: $y. $z. Frequents(x, y)ÙServes(y,z)ÙLikes(x,z)

x: "y. Frequents(x, y)Þ ($z. Serves(y,z)ÙLikes(x,z))

x: "y. Frequents(x, y)Þ "z.(Serves(y,z) Þ Likes(x,z))

Find drinkers that frequent some bar that serves only beers they like.

x: $y. Frequents(x, y)Ù"z.(Serves(y,z) Þ Likes(x,z))

Likes(drinker, beer)
Frequents(drinker, bar)
Serves(bar, beer)

Challenge: write these in SQL.
Solutions: http://queryviz.com/online/

331

171

Basic	SQL	Summary

• SQL	provides	a	high-level	declarative	language	for	manipulating	data	(DML)

• The	workhorse	is	the	SFW	block

• Set	operators	are	powerful	but	have	some	subtleties

• Powerful,	nested	queries	also	allowed.

1721

WITH clause

173

WITH	clause:	temporary	relations
SELECT pname, price
FROM Product2
WHERE price =

(SELECT max(price)
FROM Product2)

315

WITH max_price(value) as
(SELECT max(price)
FROM Product2)

SELECT pname, price
FROM Product2, max_price
WHERE price = value

Product (pname, price, cid)

The	WITH	clause	defines	a	temporary	
relation	that	is	available	only	to	the	query	
in	which	it	occurs.	Sometimes	easier	to	
read.	Very	useful	for	queries	that	need	to	
access	the	same	intermediate	result	
multiple	times

174

WITH	clause:	temporary	relations
SELECT pname, price
FROM Product2
WHERE price =

(SELECT max(price)
FROM Product2)

315

WITH max_price as
(SELECT max(price) as value
FROM Product2)

SELECT pname, price
FROM Product2, max_price
WHERE price = value

Product (pname, price, cid)

The	WITH	clause	defines	a	temporary	
relation	that	is	available	only	to	the	query	
in	which	it	occurs.	Sometimes	easier	to	
read.	Very	useful	for	queries	that	need	to	
access	the	same	intermediate	result	
multiple	times

175

Witnesses

176

Motivation:	What	are	these	queries	supposed	to	return?

PName Price cid
Gizmo 15 1
SuperGizmo 20 1
iTouch1 300 2
iTouch2 300 2

Product2
cid cname city
1 GizmoWorks Oslo
2 Apple MountainView

Company2

Find	for	each	company	id,	the	maximum	
price	amongst	its	products ?

177

Motivation:	What	are	these	queries	supposed	to	return?

PName Price cid
Gizmo 15 1
SuperGizmo 20 1
iTouch1 300 2
iTouch2 300 2

Product2
cid cname city
1 GizmoWorks Oslo
2 Apple MountainView

Company2

cid mp
1 20
2 300

Find	for	each	company	id,	the	maximum	
price	amongst	its	products

Find	for	each	company	id,	the	product	
with	maximum	price	amongst	its	products ?

178

Motivation:	What	are	these	queries	supposed	to	return?

PName Price cid
Gizmo 15 1
SuperGizmo 20 1
iTouch1 300 2
iTouch2 300 2

Product2
cid cname city
1 GizmoWorks Oslo
2 Apple MountainView

Company2

cid mp pname
1 20 SuperGizmo
2 300 iTouch1
2 300 iTouch2

cid mp
1 20
2 300

Find	for	each	company	id,	the	maximum	
price	amongst	its	products

Find	for	each	company	id,	the	product	
with	maximum	price	amongst	its	products
(Recall	that	"group	by	cid"	can	just	give	us
one	single	tuple	per	cid)

179

Witnesses:	simple	(1/4)

Q:	Find	the	most	expensive	product +	its	price
315

Product2 (pname, price, cid)

(Finding	the	maximum	price	alone	would	be	easy)

180

Witnesses:	simple	(2/4)

SELECT max(P1.price)
FROM Product2 P1

But	we	want	the	"witnesses,"	i.e.	the	product(s)	with	
the	max	price.	How	do	we	do	that?

Our	Plan:
• 1.	Compute	max	price	in	a	subquery

Q:	Find	the	most	expensive	product +	its	price

Product2 (pname, price, cid)
315

1.

(Finding	the	maximum	price	alone	would	be	easy)

181

Witnesses:	simple	(3/4)

SELECT P2.pname, P2.price
FROM Product2 P2

Our	Plan:
• 1.	Compute	max	price	in	a	subquery
• 2.	Compute	each	product	and	its	price...

Q:	Find	the	most	expensive	product +	its	price

Product2 (pname, price, cid)

SELECT max(P1.price)
FROM Product2 P1

But	we	want	the	"witnesses,"	i.e.	the	product(s)	with	
the	max	price.	How	do	we	do	that?

315

1.

2.

(Finding	the	maximum	price	alone	would	be	easy)

182

Witnesses:	simple	(4/4)

SELECT P2.pname, P2.price
FROM Product2 P2
WHERE P2.price =

(SELECT max(P1.price)
FROM Product2 P1)

Our	Plan:
• 1.	Compute	max	price	in	a	subquery
• 2.	Compute	each	product	and	its	price...

and	compare	the	price	with	the	max	price

(Finding	the	maximum	price	alone	would	be	easy)

Product2 (pname, price, cid)

Q:	Find	the	most	expensive	product +	its	price
315

183

L05:	SQL

184

Announcements!

• HW1 is	due	tonight
• HW2 groups	are	assigned

• Outline	today:	
- nested	queries	and	witnesses
- We	start	with	a	detailed	example!
- outer	joins,	nulls?

185

Small	IMDB	schema	(SQLite)

Actor
id
fname
lname
gender

Movie
id
name
year
rank

Director
id
fname
lname

Cast
aid
mid
role

Movie_director
did
mid

Movie_genre
mid
genre

300

Director_genre
did
genre
prob

186

Big	IMDB	schema	(Postgres)

Actor
id
fname
lname
gender

Movie
id
name
year

Directors
id
fname
lname

Casts
pid
mid
role

Movie_directors
did
mid

Genre
mid
genre

187

Theta	joins
What do these queries compute?

SELECT R.a, U.a
FROM R, U
WHERE R.a < U.a ?

305R
a
1
2

U
a
2
3
4

SELECT R.a, U.a
FROM R, U
WHERE R.a <= U.a ?

A	Theta-join allows	for	arbitrary	comparison	relationships	(such	as	≥).	
An	equijoin is	a	theta	join	using	the	equality	operator.

188

Theta	joins
What do these queries compute?

SELECT R.a, U.a as b
FROM R, U
WHERE R.a < U.a

305R
a
1
2

U
a
2
3
4

SELECT R.a, U.a as b
FROM R, U
WHERE R.a >= U.a

A	Theta-join allows	for	arbitrary	comparison	relationships	(such	as	≥).	
An	equijoin is	a	theta	join	using	the	equality	operator.

a b
1 2
1 3
1 4
2 3
2 4

a b
2 2

189

Witnesses:	with	joins	(1/6)

Q:	For	each	company,	find	the	most	expensive	product +	its	price

Product2 (pname, price, cid)
Company2 (cid, cname, city)315

190

Witnesses:	with	joins	(2/6)

Our	Plan:
• 1.	Compute	max	price	in	a	subquery	for	a	given	company

Q:	For	each	company,	find	the	most	expensive	product +	its	price

Product2 (pname, price, cid)
Company2 (cid, cname, city)315

191

Witnesses:	with	joins	(2/6)

Our	Plan:
• 1.	Compute	max	price	in	a	subquery	for	a	given	company

Q:	For	each	company,	find	the	most	expensive	product +	its	price

SELECT max(P1.price)
FROM Product2 P1
WHERE P1.cid = 1

Product2 (pname, price, cid)
Company2 (cid, cname, city)315

1.

192

Witnesses:	with	joins	(3/6)

Our	Plan:
• 1.	Compute	max	price	in	a	subquery	for	a	given	company
• 2.	Compute	each	product	and	its	price,	per	company

Q:	For	each	company,	find	the	most	expensive	product +	its	price

Product2 (pname, price, cid)
Company2 (cid, cname, city)315

SELECT max(P1.price)
FROM Product2 P1
WHERE P1.cid = 1

1.

193

Witnesses:	with	joins	(3/6)

SELECT C2.cname, P2.pname, P2.price
FROM Company2 C2, Product2 P2
WHERE C2.cid = P2.cid

Our	Plan:
• 1.	Compute	max	price	in	a	subquery	for	a	given	company
• 2.	Compute	each	product	and	its	price,	per	company

Q:	For	each	company,	find	the	most	expensive	product +	its	price

Product2 (pname, price, cid)
Company2 (cid, cname, city)315

SELECT max(P1.price)
FROM Product2 P1
WHERE P1.cid = 1

1.

2.

194

Witnesses:	with	joins	(3/6)

SELECT C2.cname, P2.pname, P2.price
FROM Company2 C2, Product2 P2
WHERE C2.cid = P2.cid

Our	Plan:
• 1.	Compute	max	price	in	a	subquery	for	a	given	company
• 2.	Compute	each	product	and	its	price,	per	company
• 3.	Compare	the	price	with	the	max	price

Q:	For	each	company,	find	the	most	expensive	product +	its	price

Product2 (pname, price, cid)
Company2 (cid, cname, city)315

SELECT max(P1.price)
FROM Product2 P1
WHERE P1.cid = 1

1.

2.

195

Witnesses:	with	joins	(4/6)

SELECT C2.cname, P2.pname, P2.price
FROM Company2 C2, Product2 P2
WHERE C2.cid = P2.cid

and P2.price =
(SELECT max(P1.price)
FROM Product2 P1
WHERE P1.cid = C2.cid)

Our	Plan:
• 1.	Compute	max	price	in	a	subquery	for	a	given	company
• 2.	Compute	each	product	and	its	price,	per	company
• 3.	Compare	the	price	with	the	max	price

Q:	For	each	company,	find	the	most	expensive	product +	its	price

Product2 (pname, price, cid)
Company2 (cid, cname, city)315

How	many	aliases	do	
we	actually	need?

196

Witnesses:	with	joins	(5/6)

SELECT cname, pname, price
FROM Company2, Product2
WHERE Company2.cid = Product2.cid

and price =
(SELECT max(price)
FROM Product2
WHERE cid = Company2.cid)

Q:	For	each	company,	find	the	most	expensive	product +	its	price

Product2 (pname, price, cid)
Company2 (cid, cname, city)315

Our	Plan:
• 1.	Compute	max	price	in	a	subquery	for	a	given	company
• 2.	Compute	each	product	and	its	price,	per	company

and	compare	the	price	with	the	max	price

We	need	no	single	
alias	here.

Next:	can	we	
eliminate	the	max	
operator	in	the	
inner	query?

197

Witnesses:	with	joins	(6/6)

SELECT cname, pname, price
FROM Company2, Product2
WHERE Company2.cid = Product2.cid

and price >= ALL
(SELECT price
FROM Product2
WHERE cid = Company2.cid)

Q:	For	each	company,	find	the	most	expensive	product +	its	price

Product2 (pname, price, cid)
Company2 (cid, cname, city)315

Our	Plan:
• 1.	Compute	all	prices in	a	subquery,	for	a	given	company
• 2.	Compute	each	product	and	its	price,	per	company

and	compare	the	price	with	the	all	prices

But:	"ALL"	does	
not	work	in	SQLite	
L

198

Witnesses:	with	FROM	(1/3)

Another	Plan:
• 1.	Create	a	table	that	lists	the	max	price	for	each	company	id
• 2.	Join	this	table	with	the	remaining	tables

Q:	For	each	company,	find	the	most	expensive	product +	its	price

Product2 (pname, price, cid)
Company2 (cid, cname, city)

SELECT cid, max(price) as MP
FROM Product2
GROUP BY cid

1.

315

Finding	the	maximum	price	for	each	company	was	easy.	
But	we	want	the	“witnesses”,	i.e.	the	products	with	max	price.

199

SELECT C2.cname, P2.pname, X.MP
FROM Company2 C2, Product2 P2,

(SELECT cid, max(price) as MP
FROM Product2
GROUP BY cid) as X

WHERE C2.cid = P2.cid
and C2.cid = X.cid
and P2.price = X.MP

Witnesses:	with	FROM	(2/3)

Another	Plan:
• 1.	Create	a	table	that	lists	the	max	price	for	each	company	id
• 2.	Join	this	table	with	the	remaining	tables

Q:	For	each	company,	find	the	most	expensive	product +	its	price

Product2 (pname, price, cid)
Company2 (cid, cname, city)

2.

315

Let's	write	the	
same	query	with	
a	"WITH"	clause

200

WITH X(cid, MP) as
(SELECT cid, max(price)
FROM Product2
GROUP BY cid)

SELECT C2.cname, P2.pname, X.MP
FROM Company2 C2, Product2 P2, X
WHERE C2.cid = P2.cid

and C2.cid = X.cid
and P2.price = X.MP

Witnesses:	with	FROM	(3/3)

Another	Plan	with	WITH:
• 1.	Create	a	table	that	lists	the	max	price	for	each	company	id
• 2.	Join	this	table	with	the	remaining	tables

Q:	For	each	company,	find	the	most	expensive	product +	its	price

Product2 (pname, price, cid)
Company2 (cid, cname, city)315

201

Witnesses:	with	aggregates	per	group	(1/8)

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

SELECT product, max(price) as mp
FROM
WHERE
GROUP BY
HAVING

First: How to get the product that is sold with maximum price?

Product mp
Banana 4

???

308
Purchase

202

Witnesses:	with	aggregates	per	group	(2/8)

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

1) Find the maximum price

(no name)
4

SELECT max(price)
FROM Purchase

308
Purchase

First: How to get the product that is sold with maximum price?

203

Witnesses:	with	aggregates	per	group	(3/8)

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

2) Now you need to find product with price = maximum price

SELECT P2.product, P2.price as mp
FROM Purchase P2
WHERE P2.price = (

)

SELECT max(price)
FROM Purchase

Product mp
Banana 4

308
Purchase

First: How to get the product that is sold with maximum price?

204

Witnesses:	with	aggregates	per	group	(4/8)

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

Another way to formulate this query

SELECT P2.product, P2.price as mp
FROM Purchase P2
WHERE P2.price >= ALL (

SELECT price
FROM Purchase

)

Product mp
Banana 4

SELECT price
FROM Purchase

308
Purchase

First: How to get the product that is sold with maximum price?

205

Witnesses:	with	aggregates	per	group	(5/8)

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

SELECT
FROM
WHERE
GROUP BY
HAVING

Second: How to get the product that is sold with max sales (=quanities sold)?

Product sales
Banana 70

???

308
Purchase

206

Witnesses:	with	aggregates	per	group	(6/8)

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

1: find the total sales (sum of quantity) for each product

Product sales
Bagel 40
Banana 70

SELECT product, sum(quantity) as sales
FROM Purchase
GROUP BY product

308
Purchase

Second: How to get the product that is sold with max sales (=quanities sold)?

207

Witnesses:	with	aggregates	per	group	(7/8)

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

2: we can use the same query as nested query

(no name)
40
70

SELECT sum(quantity)
FROM Purchase
GROUP BY product

308
Purchase

Second: How to get the product that is sold with max sales?

208

Witnesses:	with	aggregates	per	group	(8/8)

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

3: putting things together

SELECT product, sum(quantity) as sales
FROM Purchase
GROUP BY product
HAVING sum(quantity) >= ALL (

SELECT sum(quantity)
FROM Purchase
GROUP BY product)

Product sales
Banana 70

SELECT sum(quantity)
FROM Purchase
GROUP BY product

308
Purchase

Second: How to get the product that is sold with max sales?

Next:	Can	you	write	
the	query	without	
the	"ALL"	quanitfier?

209

Witnesses:	with	aggregates	per	group	(8/8)

Product Price Quantity
Bagel 3 20
Bagel 2 20
Banana 1 50
Banana 2 10
Banana 4 10

Another way to formulate this query without "ALL"

SELECT product, sum(quantity) as sales
FROM Purchase
GROUP BY product
HAVING sum(quantity) =

(SELECT max (Q)
FROM (SELECT sum(quantity) Q

FROM Purchase
GROUP BY product) X)

Product sales
Banana 70

(SELECT sum(quantity) Q
FROM Purchase
GROUP BY product) X

308
Purchase

Second: How to get the product that is sold with max sales?

210

Understanding
nested queries

211

More	SQL	Queries

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000)

Sailors	(sid,	sname,	rating,	age)
Reserves	(sid,	bid,	day)
Boats	(bid,	bname,	color) 340

212

More	nested	Queries	1

Q:	Find	the	names	of	sailors	who	have	reserved	a	red	boat.

SELECT	S.sname
FROM Sailors	S
WHERE S.sid	IN

(SELECT	R.sid
FROM Reserves	R
WHERE R.bid	IN

(SELECT B.bid
FROM Boats	B
WHERE B.color	=	'red'))

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000)

Sailors	(sid,	sname,	rating,	age)
Reserves	(sid,	bid,	day)
Boats	(bid,	bname,	color) 340

213

SELECT	S.sname
FROM Sailors	S
WHERE S.sid	IN

(SELECT	R.sid
FROM Reserves	R
WHERE R.bid	IN

(SELECT B.bid
FROM Boats	B
WHERE B.color	=	'red'))

More	nested	Queries	2

Q:	Find	the	names	of	sailors	who	have	reserved	a	boat that	is	not	red.

SELECT	S.sname
FROM Sailors	S
WHERE S.sid	IN

(SELECT	R.sid
FROM Reserves	R
WHERE R.bid	not IN

(SELECT B.bid
FROM Boats	B
WHERE B.color	=	'red'))

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000)

They	must	have	reser-
ved	at	least	one boat	
in	another	color

Sailors	(sid,	sname,	rating,	age)
Reserves	(sid,	bid,	day)
Boats	(bid,	bname,	color) 340

214

SELECT	S.sname
FROM Sailors	S
WHERE S.sid	IN

(SELECT	R.sid
FROM Reserves	R
WHERE R.bid	not IN

(SELECT B.bid
FROM Boats	B
WHERE B.color	=	'red'))

More	nested	Queries	3

Q:	Find	the	names	of	sailors	who	have	not	reserved	a	red	boat.

SELECT	S.sname
FROM Sailors	S
WHERE S.sid	not IN

(SELECT	R.sid
FROM Reserves	R
WHERE R.bid	IN

(SELECT B.bid
FROM Boats	B
WHERE B.color	=	'red'))

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000)

They	can	have	reser-
ved	0	or	more	boats in	
another	color,	but	
must	not	have	
reserved	any	red	boat

Sailors	(sid,	sname,	rating,	age)
Reserves	(sid,	bid,	day)
Boats	(bid,	bname,	color) 340

215

SELECT	S.sname
FROM Sailors	S
WHERE S.sid	not IN

(SELECT	R.sid
FROM Reserves	R
WHERE R.bid	IN

(SELECT B.bid
FROM Boats	B
WHERE B.color	=	'red'))

More	nested	Queries	4

=	Find	the	names	of	sailors	who	have	reserved	only	red boats
Q:	Find	the	names	of	sailors	who	have	not	reserved	a	boat	that	is	not	red.

SELECT	S.sname
FROM Sailors	S
WHERE S.sid	not IN

(SELECT	R.sid
FROM Reserves	R
WHERE R.bid	not IN

(SELECT B.bid
FROM Boats	B
WHERE B.color	=	'red'))

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000)

Sailors	(sid,	sname,	rating,	age)
Reserves	(sid,	bid,	day)
Boats	(bid,	bname,	color) 340

216

More	nested	Queries	5

SELECT	S.sname
FROM Sailors	S
WHERE not	exists

(SELECT	B.bid
FROM Boats	B
WHERE B.color	=	'red'	
AND not	exists

(SELECT R.bid
FROM Reserves	R
WHERE R.bid	=	B.bid
AND	R.sid	=	S.sid))

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000)

=	Find	the	names	of	sailors	who	have	reserved	all	red	boats
Q:	Find	the	names	of	sailors	so	there	is	no	red	boat that	is	not	reserved	by	him.

To	understand	semantics	of	
nested	queries,	think	of	a	
nested	loops	evaluation:	For	
each	Sailors	tuple,	check	the	
qualification	by	computing	the	
subquery

Sailors	(sid,	sname,	rating,	age)
Reserves	(sid,	bid,	day)
Boats	(bid,	bname,	color) 340

217

Once	more:	1

Q:	Find	the	names	of	sailors	who	have	reserved	a	red	boat.

SELECT	S.sname
FROM Sailors	S
WHERE S.sid	IN

(SELECT	R.sid
FROM Reserves	R
WHERE R.bid	IN

(SELECT B.bid
FROM Boats	B
WHERE B.color	=	'red'))

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000)

Sailors	(sid,	sname,	rating,	age)
Reserves	(sid,	bid,	day)
Boats	(bid,	bname,	color) 340

218

Once	more:	2

Q:	Find	the	names	of	sailors	who	have	reserved	a	boat that	is	not	red.

SELECT	S.sname
FROM Sailors	S
WHERE S.sid	IN

(SELECT	R.sid
FROM Reserves	R
WHERE R.bid	not IN

(SELECT B.bid
FROM Boats	B
WHERE B.color	=	'red'))

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000)

Sailors	(sid,	sname,	rating,	age)
Reserves	(sid,	bid,	day)
Boats	(bid,	bname,	color) 340

219

Once	more:	3

Q:	Find	the	names	of	sailors	who	have	not	reserved	a	red	boat.

SELECT	S.sname
FROM Sailors	S
WHERE S.sid	not IN

(SELECT	R.sid
FROM Reserves	R
WHERE R.bid	IN

(SELECT B.bid
FROM Boats	B
WHERE B.color	=	'red'))

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000)

Sailors	(sid,	sname,	rating,	age)
Reserves	(sid,	bid,	day)
Boats	(bid,	bname,	color) 340

220

Once	more:	4

=	Find	the	names	of	sailors	who	have	reserved	only	red	boats
Q:	Find	the	names	of	sailors	who	have	not	reserved	a	boat	that	is	not	red.

SELECT	S.sname
FROM Sailors	S
WHERE S.sid	not IN

(SELECT	R.sid
FROM Reserves	R
WHERE R.bid	not IN

(SELECT B.bid
FROM Boats	B
WHERE B.color	=	'red'))

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000)

Sailors	(sid,	sname,	rating,	age)
Reserves	(sid,	bid,	day)
Boats	(bid,	bname,	color) 340

221

SELECT	S.sname
FROM Sailors	S
WHERE not	exists

(SELECT	B.bid
FROM Boats	B
WHERE B.color	=	'red'	
AND not	exists

(SELECT R.bid
FROM Reserves	R
WHERE R.bid	=	B.bid
AND	R.sid	=	S.sid))

Once	more:	5

Query from: Ramakrishnan, Gehrke: Database management systems, 2nd ed (2000)

=	Find	the	names	of	sailors	who	have	reserved	all	red	boats
Q:	Find	the	names	of	sailors	so	there	is	no	red boat	that	is	not	reserved	by	him.

Sailors	(sid,	sname,	rating,	age)
Reserves	(sid,	bid,	day)
Boats	(bid,	bname,	color) 340

222

help

help

QueryViz
Y o u r I n p u t

Specify or choose a pre-defined schema

Employee and Department

EMP(eid,name,sal,did)
DEPT(did,dname,mgr)

Specify or choose an SQL Query

Query 8

SELECT e1.name
FROM EMP e1, EMP e2, DEPT d
WHERE e1.did = d.did
AND d.mgr = e2.eid
AND e1.sal > e2.sal

Submit

Q u e r y V i z R e s u l t

Input:	Schema

Output:	Visualization

Input	Query

http://queryviz.com

http://queryviz.com/online

http://www.youtube.com/watch?v=kVFnQRGAQls

2232

Multiset operations
(Intersect, Except)

224

Recall	Multisets	(Bags)

Tuple

(1,	a)

(1,	a)

(1, b)

(2,	c)

(2,	c)

(2,	c)

(1,	d)

(1,	d)

Tuple 𝝀(𝑿)
(1,	a) 2

(1,	b) 1

(2,	c) 3

(1, d) 2Equivalent	
Representations
of	a	Multiset

Multiset X

Multiset X

Note:	In	a	set	all	
counts	are	{0,1}.

𝝀 𝑿 =	“Count	of	tuple	in	X”
(Items	not	listed	have	
implicit	count	0)

225

Generalizing	Set	Operations	to	Multiset	Operations

Tuple 𝝀(𝑿)
(1,	a) 2

(1,	b) 0

(2,	c) 3

(1, d) 0

Multiset X

Tuple 𝝀(𝒀)
(1,	a) 5

(1,	b) 1

(2,	c) 2

(1, d) 2

Multiset Y

Tuple 𝝀(𝒁)
(1,	a) 2

(1,	b) 0

(2,	c) 2

(1, d) 0

Multiset Z

∩ =

𝝀 𝒁 = 𝒎𝒊𝒏(𝝀 𝑿 , 𝝀 𝒀)
For	sets,	this	is	
intersection

226

Generalizing	Set	Operations	to	Multiset	Operations

Tuple 𝝀(𝑿)
(1,	a) 2

(1,	b) 0

(2,	c) 3

(1, d) 0

Multiset X

Tuple 𝝀(𝒀)
(1,	a) 5

(1,	b) 1

(2,	c) 2

(1, d) 2

Multiset Y

Tuple 𝝀(𝒁)
(1,	a) 7

(1,	b) 1

(2,	c) 5

(1, d) 2

Multiset Z

∪ =

𝝀 𝒁 = 𝝀 𝑿 + 	𝝀 𝒀
For	sets,	

this	is	union

227

Multiset	Operations	in	SQL

228

Explicit	Set	Operators:	INTERSECT

SELECT R.A
FROM R, S
WHERE R.A=S.A
INTERSECT
SELECT R.A
FROM R, T
WHERE R.A=T.A

𝑟. 𝐴	 	𝑟. 𝐴 = 𝑠. 𝐴 ∩ 𝑟. 𝐴	 𝑟. 𝐴 = 𝑡. 𝐴}

Q1 Q2

229

UNION

SELECT R.A
FROM R, S
WHERE R.A=S.A
UNION
SELECT R.A
FROM R, T
WHERE R.A=T.A

Q1 Q2

𝑟. 𝐴	 	𝑟. 𝐴 = 𝑠. 𝐴 ∪ 𝑟. 𝐴	 𝑟. 𝐴 = 𝑡. 𝐴}

Why	aren’t	there	
duplicates?

By	default:	SQL	uses	set	
semantics	for	
INTERSECT	and	UNION!

What	if	we	want	
duplicates?

230

UNION	ALL

SELECT R.A
FROM R, S
WHERE R.A=S.A
UNION ALL
SELECT R.A
FROM R, T
WHERE R.A=T.A ALL	indicates	

Multiset
operations

Q1 Q2

𝑟. 𝐴	 	𝑟. 𝐴 = 𝑠. 𝐴 ∪ 𝑟. 𝐴	 𝑟. 𝐴 = 𝑡. 𝐴}

231

EXCEPT

SELECT R.A
FROM R, S
WHERE R.A=S.A
EXCEPT
SELECT R.A
FROM R, T
WHERE R.A=T.A What	is	the	

multiset version?

Q1 Q2

𝑟. 𝐴	 	𝑟. 𝐴 = 𝑠. 𝐴 \{𝑟. 𝐴|𝑟. 𝐴 = 𝑡. 𝐴}

232

INTERSECT	and	EXCEPT*

2
3
2

(SELECT	R.a,	R.b
FROM					R)

INTERSECT

(SELECT S.a,	S.b
FROM				S)

SELECT R.a,	R.b
FROM R
WHERE
EXISTS (SELECT *

FROM	 S
WHERE	 R.a=S.a	
and	 R.b=S.b)

(SELECT	R.A,	R.B
FROM					R)

EXCEPT

(SELECT S.A,	S.B
FROM				S)

SELECT	R.A,	R.B
FROM				R
WHERE
NOT		EXISTS			(SELECT		*

FROM S
WHERE	R.A=S.A	
and	 R.B=S.B)

*Not	in	all	DBMSs.	(SQLlite	does	not	like	the	parentheses,	Oracle	uses	"MINUS"	instead	of	"EXCEPT")

R(a,b)
S(a,b)

If	R,	S	have	no	
duplicates,	then	
can	write	without	
sub-queries	
(HOW?)

233

L06:	SQL

234

Announcements!

• Please	pick	up	your	name	card
- always	come	with	your	name	card
- If	nobody	answers	my	question,	I	will	likely	pick	on	those	without	a	namecard or	in	the	

last	row

• Polls	on	speed:	we	slow	down	and	have	another	SQL	lecture	(likely	no	NoSQL)
• Use	the	anonymous	feedback	form
• HW3 and	later:	in	teams

• Outline	today:	
- HW1 together
- outer	joins,	nulls

235

SELECT cname
FROM Product P, Company
WHERE country = 'USA'
AND P.category = 'Gadgets'
AND P.manufacturer = cname

A	word	on	capitalization 302

Product (pname, price, category, manufacturer)
Company (cname, stockprice, country)

Q:	Find	all	US	companies	that	manufacture	
products	in	the	'Gadgets'	category!

My	recommendation	for	capitalization

1.	SQL	keywords	in	ALL	CAPS,
2.	Table	names	with	Initial	Caps
3.	Column	names	all	in	lowercase.

More	information:	http://blog.lerner.co.il/quoting-postgresql/ ,	https://stackoverflow.com/questions/6331504/omitting-the-double-quote-to-do-query-on-postgresql

PostgreSQL	treats	all	in	lowercase.
Except	if	you	write:	
create	table	"Product"	(…)
This	will	preserve	capitalization	of	table	name
But	… you	need	to	always	use	quotations

236

HW1

237

Big	IMDB	schema	(Postgres)

Actor
id
fname
lname
gender

Movie
id
name
year

Directors
id
fname
lname

Casts
pid
mid
role

Movie_directors
did
mid

Genre
mid
genre

238

Quiz
Find	the	first/last	names	of	all	actors	who	appeared	in	both	of	the	
following	movies:	Kill	Bill:	Vol.	1	and	Kill	Bill:	Vol.	2.	

SELECT DISTINCT A.fname, A.lname
FROM Actor A, Casts C, Movie M1, Movie M2
WHERE M1.name = 'Kill Bill: Vol. 1'

and M2.name = 'Kill Bill: Vol. 2'
and M1.id = C.mid
and M2.id = C.mid
and C.pid = A.id

IMDB (postgres)

Picture	Source:	http://queryviz.com/online

L

239

Quiz
Find	the	first/last	names	of	all	actors	who	appeared	in	both	of	the	
following	movies:	Kill	Bill:	Vol.	1	and	Kill	Bill:	Vol.	2.	

IMDB (postgres)

SELECT DISTINCT A.fname, A.lname
FROM Actor A, Casts C, Movie M1, Movie M2, Casts C2
WHERE M1.name = 'Kill Bill: Vol. 1'

and M2.name = 'Kill Bill: Vol. 2'
and M1.id = C.mid
and M2.id = C2.mid
and C.pid = A.id
and C2.pid = A.id

Picture	Source:	http://queryviz.com/online

240

Quiz
Find	the	first/last	names	of	all	actors	who	appeared	in	both	of	the	
following	movies:	Kill	Bill:	Vol.	1	and	Kill	Bill:	Vol.	2.	

IMDB (postgres)

SELECT A.id, A.lname, A.fname,
FROM actor A, cast C, movie M
WHERE M.id = C.mid

AND A.id = C.pid
AND (M.name = 'Kill Bill: Vol. 1'

OR M.name = 'Kill Bill: Vol. 2')
GROUP BY A.id, A.lname, A.fname
HAVING count(M.id) > 1

What	if	an	actor	played	two	roles	in	Kill	Bill	1?

241

Null Values

242

3-valued	logic	example

• Three	logicians	walk	into	a	bar.	The	bartender	asks:	
"Do	all	of	you	want	a	drink?"

• The	1st	logician	says:	"I	don't	know."
• The	2nd	logician	says:	"I	don't	know."
• The	3rd	logician	says:	"Yes!"

243

Nulls	in	SQL

• Whenever	we	don't	have	a	value,	we	can	put	a	NULL

• Can	mean	many	things:
- Value	does	not	exists
- Value	exists	but	is	unknown
- Value	not	applicable
- Etc.

• The	schema	specifies	for	each	attribute	if	it	can	be	NULL	(nullable	
attribute)	or	not

• How	does	SQL	cope	with	tables	that	have	NULLs	? 2
4
3

244

Null	Values

• In	SQL	there	are	three	Boolean	values:
- FALSE,	TRUE,	UNKNOWN

• If	x=	NULL	then	
- Arithmetic	operations	produce	NULL.	E.g:	4*(3-x)/7
- Boolean	conditions	are	also	NULL.	E.g:	x='Joe'
- aggregates	ignore	NULL	values

• Logical	reasoning:
- FALSE	=	0 x	AND	y	=	min(x,y)
- TRUE	=	1 x	OR	y	=	max(x,y)
- UNKNOWN	=	0.5 NOT	x	=	(1	– x)

2
4
4

245

Null	Values:	example
SELECT *
FROM Person
WHERE (age < 25)

and (height > 6 or weight > 190)

Age Height Weight
20 NULL 200
NULL 6.5 170

Person

246

Null	Values:	example
SELECT *
FROM Person
WHERE (age < 25)

and (height > 6 or weight > 190)

Rule	in	SQL:	
include	only	tuples that	
yield	TRUE

Age Height Weight
20 NULL 200
NULL 6.5 170

Person

247

Null	Values:	example
SELECT *
FROM Person
WHERE (age < 25)

and (height > 6 or weight > 190)

Rule	in	SQL:	
include	only	tuples that	
yield	TRUE

Age Height Weight
20 NULL 200
NULL 6.5 170

SELECT *
FROM Person
WHERE age < 25 or age >= 25

Person

248

Null	Values:	example
SELECT *
FROM Person
WHERE (age < 25)

and (height > 6 or weight > 190)

Rule	in	SQL:	
include	only	tuples that	
yield	TRUE

Age Height Weight
20 NULL 200
NULL 6.5 170

SELECT *
FROM Person
WHERE age < 25 or age >= 25

Unexpected	behavior

SELECT *
FROM Person
WHERE age < 25 or age >= 25 or age IS NULL

Test	NULL	
explicitly

Person

249

Null	Values	and	Aggregates

gid val
1 NULL
1 NULL
2 a
2 a
2 z
2 z
2 NULL
3 A
3 A
3 Z

SELECT gid,
MAX(val) maxv,
MIN(val) minv,
COUNT(*) ctr,
COUNT(val) ctv,
COUNT(DISTINCT val) ctdv

FROM T
GROUP BY gid
ORDER BY gid

T

373

?

250

ctdv
0
3
2

Null	Values	and	Aggregates

gid val
1 NULL
1 NULL
2 a
2 B
2 z
2 z
2 NULL
3 A
3 A
3 Z

SELECT gid,
MAX(val) maxv,
MIN(val) minv,
COUNT(*) ctr,
COUNT(val) ctv,
COUNT(DISTINCT val) ctdv

FROM T
GROUP BY gid
ORDER BY gid

T

373

gid
1
2
3

maxv
NULL
z
Z

ctv
0
4
3

ctr
2
5
3

minv
NULL
B
A

NULL	is	ignored	by	
aggregate	functions	
if	you	reference	the	
column	specifically.
Exception:	COUNT	!

251

Inner Joins
vs. Outer Joins

252

Alternaive	Join	Syntax

SELECT Item.name, Purchase2.store
FROM Item JOIN Purchase2 ON

Item.name = Purchase2.iName

SELECT Item.name, Purchase2.store
FROM Item, Purchase2
WHERE Item.name = Purchase2.iName
Same	as:

An	"inner	join":

Name Category
Gizmo Gadget
Camera Photo
OneClick Photo

Item
Name Store
Gizmo Wiz
Camera Ritz
Camera Wiz

Result
iName Store Month
Gizmo Wiz 8
Camera Ritz 8
Camera Wiz 9

Purchase2

Item(name,	category)
Purchase2(iName,	store,	month)

334

253

etext eid fid ftext
One 1 1 Un
Three 3 3 Trois
Four 4 4 Quatre
Five 5 5 Cinq
Six 6 6 Siz

Illustration
fid fText
1 Un
3 Trois
4 Quatre
5 Cinq
6 Siz
7 Sept
8 Huit

English
eText eid
One 1
Two 2
Three 3
Four 4
Five 5
Six 6

French

SELECT *
FROM English, French
WHERE eid = fid

361

SELECT *
FROM English JOIN French
ON eid = fid

Same	as:

An	"inner	join":

"JOIN"
same	as	

"INNER	JOIN"

254

etext eid fid ftext
One 1 1 Un
Two 2 NULL NULL
Three 3 3 Trois
Four 4 4 Quatre
Five 5 5 Cinq
Six 6 6 Siz
NULL NULL 7 Sept
NULL NULL 8 Huit

Illustration
fid fText
1 Un
3 Trois
4 Quatre
5 Cinq
6 Siz
7 Sept
8 Huit

English
eText eid
One 1
Two 2
Three 3
Four 4
Five 5
Six 6

French

SELECT *
FROM English FULL JOIN French
ON English.eid = French.fid

SQLite	does	not	support	"FULL	OUTER	JOIN"s	L (but	"LEFT	JOIN")

361

SELECT *
FROM English JOIN French
ON eid = fid

"FULL	JOIN"
same	as	

"FULL	OUTER	JOIN"

