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The	world	is	increasingly	
driven	by	data…	

This	class	teaches	the	basics	of	
how	to	use	&	manage	data.
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Increasingly	many	companies	see	
themselves	as	data	driven.
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Key	Questions	We	Will	Answer

• How	can	we	collect	and	store	large	amounts	of	data?
- By	building	tools	and	data	structures	to	efficiently	index	and	serve	data

• How	can	we	efficiently	query	data?
- By	compiling	high-level	declarative	queries	into	efficient	low-level	plans

• How	can	we	safely	update	data?
- By	managing	concurrent	access	to	state	as	it	is	read	and	written

• How	do	different	database	systems	manage	design	trade-offs?
- e.g.,	at	scale,	in	a	distributed	environment?
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When	you’ll	use	this	material

• Building	almost	any	software	application
- e.g.,	mobile,	cloud,	consumer,	enterprise,	analytics,	machine	learning
- Corollary:	every	application	you	use	uses	a	database
- Bonus:	every	program	consumes	data	(even	if	only	the	program	text!)

• Performing	data	analytics
- Business	intelligence,	data	science,	predictive	modeling
- (Even	if	you’re	using	Pandas	https://pandas.pydata.org/,	you’re	using	relational	

algebra!)

• Building	data-intensive	tools	and	applications
- Many	core	concepts	power	deep	learning	frameworks	to	self-driving	cars



6

Today’s	Lecture

1. Introduction,	admin	&	setup

2. Overview	of	the	relational	data	model

3. Overview	of	DBMS	topics:	Key	concepts	&	challenges
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What	you	will	learn	about	in	this	section

1. Motivation	for	studying	DBs

2. Administrative	structure

3. Course	logistics

4. Overview	of	lecture	coverage

5. Some	thoughts	on	Pedagogy



8

Big	Data	Landscape…	Infrastructure	is	Changing

http://www.bigdatalandscape.com/

New tech.	Same Principles.
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Some	"birth-years".	When	was	SQL	born?

• 2004:	Facebook

• 1998:	Google
• 1995:	Java,	Ruby
• 1993:	World	Wide	Web
• 1991:	Python

• 1985:	Windows
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Some	"birth-years"

• 2004:	Facebook

• 1998:	Google
• 1995:	Java,	Ruby
• 1993:	World	Wide	Web
• 1991:	Python

• 1985:	Windows

• 1974:	SQL



11

Why	should	you	study	databases?

• Mercenary- make	more	$$$:
- Startups	need	DB	talent	right	away	=	low	employee	#
- Massive	industry…

• Intellectual:
- Science:	data	poor	to	data	rich

• No	idea	how	to	handle	the	data!
- Fundamental	ideas	to/from	all	of	CS:	

• Systems,	theory,	AI,	logic,	stats,	analysis….

Many	great	computer	systems	ideas	started	in	DB.
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What	this	course	is	(and	is	not)

• Discuss	fundamentals	of	data	management
- How	to	design	databases,	query	databases,	build	applications	with	them.
- How	to	debug	them	when	they	go	wrong!
- Not	how	to	be	a	DBA	or	how	to	tune	Oracle	12g.

• We’ll	cover	how	database	management	systems	work	

• And	some	(but	not	all	of)	the	principles	of	how	to	build	them	
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Who	we	are…

• Instructor	(me)	Wolfgang	Gatterbauer
- Faculty	in	the	DATA	lab	(https://db.ccis.northeastern.edu/)
- First	year	at	Northeastern!
- Taught	before	at	University	of	Washington	and	CMU's	business	school
- Research:	theoretic	foundations	for	scalable	data	management
- Office	hours:	W	2:00-4:00,	WVH 450
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Teaching	Assistants
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https://course.ccs.neu.edu/cs3200sp18s2/

Not:
https://course.ccs.neu.edu/cs3200sp18s3/
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Communication	w/	Course	Staff

• Piazza

• Office	hours

• By	appointment!
TAs OHs to be listed on 
the course website!

Meeting	location:	TBD:	
(either	4th floor	or	1st floor	WVH)
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Piazza

The goal is to get you to answer each other’s questions so 
you can benefit and learn from each other. 
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Please	use	this	simple	way	
to	let	me	know	what	works
or	not!

https://goo.gl/sLJJeH

Piazza	is	visible	to	everyone	
in	this	class.	This	form	only	
to	me
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Important!

• Students	with	documented	disabilities	should	send	in	their	
accommodation	letter	from	the	Disability	Resource	Center	at	20	
Dodge	Hall	by	the	end	of	this	week	to	me.
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Lectures

• Lecture	slides	cover	essential	material
- This	is	your	best	reference.
- We	are	trying	to	get	away	from	book,	but	do	have	pointers

• Try	to	cover	same	thing	in	many	ways:	Lecture,	lecture	notes,	homework,	
exams	(no	shock)
- Attendance	makes	your	life	easier…	
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Attendance

• I	dislike	mandatory	attendance…	but	in	the	past	we	noticed…
- People	who	did	not	attend	did	worse	L
- People	who	did	not	attend	used	more	course	resources	L
- People	who	did	not	attend	were	less	happy	with	the	course	L

• In	previous	school:	mandatory	attendance
• This	year:	voluntary	(to	start!)	-- reserve	right	to	change
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Graded	Elements

• Gradiance quizzes	+	participation	(10%)

• Homeworks (25%)

• Group	project	(25%)	

• Three	exams	(40%	=	10%	+	10%	+	20%)

Homeworks are	typically	
due	Wednesday	end	of	day,	
and	are	posted	at	least	1	
week	before	due	date
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Un-Graded	Elements

• Readings	provided	to	help	you!
- Only	items	in	lecture,	homework,	or	project	are	fair	game.

• In-class	activities	are	mainly	to	help	/	be	fun!
- Will	occur	during	class- not	graded,	but	count	as	part	of	lecture	material	(fair	game	as	

well)
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What	is	expected	from	you	

• Attend	lectures
- If	you	don’t,	it’s	at	your	own	peril

• Be	active	and	think	critically
- Ask	questions,	post	comments	on	forums

• Do	programming	and	homework	projects	
- Start	early	and	be	honest

• Study	for	exams
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Interested	in	Research?
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• R.	Li,	M.	Riedewald,	Xinyan Deng	
Submodularity of	Distributed	Join	Computation

Poster	presentation	at	Northeast	Database	day	2018

Paper	at	SIGMOD 2018

• R.	Li,	Aditya	Ghosh,	M.	Riedewald,	W.	Gatterbauer
Optimizing	Data	Partitioning	for	Distributed	Band	Joins

• P.	Ojha,	Paul	Langton,	W.	Gatterbauer
Scalable	Compatibility	Estimation	in	Large	Network	Data

In	progress http://queryviz.com
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Lectures:	1st	half	- from	a	user’s	perspective

1. SQL:	Relational	data	models	&	Queries
- ~	5	lectures
- How	to	manipulate	data	with	SQL,	a	declarative	language

• reduced	expressive	power	but	the	system	can	do	more	for	you

2. Database	Design:	Design	theory	and	constraints
- ~	6	lectures
- Designing	relational	schema	to	keep	your	data	from	getting	corrupted

3. Transactions:	Syntax	&	supporting	systems
- ~	3	lectures
- A	programmer’s	abstraction	for	data	consistency
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Lectures:	2nd	half	- understanding	how	it	works

4. Database	internals:	Query	Processing
- ~	7	lectures
- Indexing	
- External	Memory	Algorithms	(IO	model)	for	sorting,	joins,	etc.
- Basics	of	query	optimization	(Cost	Estimates)
- Relational	algebra

5. NoSQL
- ~0-2	lectures
- Key-Value	Stores
- (More	in	CS6240:	Large-Scale	Parallel	Data	Processing)
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https://course.ccs.neu.edu/cs3200sp18s2/sched.html
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Studying	material:	"Under	which	study	
condition	do	you	think	you	learn	better?"

Source:	Karpicke	&	Blunt,	"Retrieval	Practice	Produces	More	Learning	than	Elaborative	Studying	with	Concept	Mapping,"	Science,	2011.

Judged	performance
(=what	people	think)

Actual	performance
(=what	is	actually	working)

passive	reading active	Q&A
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Source:	http://5.mshcdn.com/wp-content/gallery/the-year-2000-as-imagined-in-1900/future.jpg

The	year	2000	imagined	in	1900
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Sequencing	Material:	"Under	which	teaching	
condition	do	you	think	you	learn	better?"

Source:	Bjork	&	Bjork,	"Making	things	hard	on	yourself,	but	in	a	good	way:	Creating	desirable	difficulties	to	enhance	learning," Psychology	and	the	real	world	(...),	2011.

from	the	textbook	for	70-451	MIS
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Spaced	Repetition

1 day 3 days 1 week 1 month 6 months

correct

incorrect

Ebbinghaus	
Forgetting	Curve

Leitner	System	
(Pimsleur's	graduated
interval	recall)

Sources:	http://www.wired.com/2008/04/ff-wozniak/,			Gatterbauer	&	Suciu,	"Managing	Structured	Collections	of	Community	Data,"	CIDR	2011.
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The	"Surfer	Analogy"	for	time	management

Source:	http://stwww.surfermag.com/files/2013/10/Yak_Charlie-970x646.jpg
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Today’s	Lecture

1. Introduction,	admin	&	setup

2. Overview	of	the	relational	data	model

3. Overview	of	DBMS	topics:	Key	concepts	&	challenges
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What	you	will	learn	about	in	this	section

1. Definition	of	DBMS

2. Data	models	&	the	relational	data	model

3. Schemas	&	data	independence
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What	is	a	DBMS?

• A	large,	integrated	collection	of	data

• Models	a	real-world	enterprise
- Entities	(e.g.,	Students,	Courses)
- Relationships	(e.g.,	Alice	is	enrolled	in	145)

A	Database	Management	System	(DBMS) is	a	
piece	of	software	designed	to	store	and	
manage	databases
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A	Motivating,	Running	Example

• Consider	building	a	course	management	system	(CMS):

- Students
- Courses
- Professors

- Who	takes	what
- Who	teaches	what Relationships

Entities
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Data	models

• A	data	model is	a	collection	of	concepts	for	describing	data

- The	relational	model	of	data is	the	most	widely	used	model	today
• Main	Concept:	the	relation- essentially,	a	table

• A	schema is	a	description	of	a	particular	collection	of	data,	using	the	
given	data	model

- E.g.	every	relation	in	a	relational	data	model	has	a	schema	describing	types,	
etc.
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Bruce	Lindsay,	IBM	Research

As	quoted	in:	https://dl.acm.org/citation.cfm?id=1083803

“Relational	
databases	are	the	
foundation	of	
western	
civilization”
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Modeling	the	CMS

• Logical	Schema
- Students(sid:	string,	name:	string,	gpa:	float)
- Courses(cid:	string,	cname:	string,	credits:	int)
- Enrolled(sid:	string,	cid:	string,	grade:	string)

sid Name Gpa
101 Bob 3.2
123 Mary 3.8

Students

cid cname credits
564 564-2 4
308 417 2

Coursessid cid Grade
123 564 A

Enrolled

Relations
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Modeling	the	CMS

• Logical	Schema
- Students(sid:	string,	name:	string,	gpa:	float)
- Courses(cid:	string,	cname:	string,	credits:	int)
- Enrolled(sid:	string,	cid:	string,	grade:	string)

sid Name Gpa
101 Bob 3.2
123 Mary 3.8

Students

cid cname credits
564 564-2 4
308 417 2

Coursessid cid Grade
123 564 A

Enrolled

Corresponding 
keys
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Other	Schemata…

• External	Schema:	(Views)
- Course_info(cid:	string,	enrollment:	integer)
- Derived	from	other	tables

• Logical	Schema:	Previous	slide

• Physical	Schema:	describes	data	layout
- Relations	as	unordered	files
- Some	data	in	sorted	order	(index)

Administrators

Applications
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Data	independence

• Concept:	Applications	do	not	need	to	worry	about	
how	the	data	is	structured	and	stored

44

Logical	data	independence:
protection	from	changes	in	the	
logical	structure	of	the	data

Physical	data	independence:
protection	from	physical	layout	
changes

One	of	the	most	important	reasons	to	use	a	DBMS

I.e. should not need to ask: can 
we add  a new entity or attribute 
without rewriting the application?

I.e. should not need to ask: 
which disks are the data stored 
on? Is the data indexed?
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Today’s	Lecture

1. Introduction,	admin	&	setup

2. Overview	of	the	relational	data	model

3. Overview	of	DBMS	topics:	Key	concepts	&	challenges
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What	you	will	learn	about	in	this	section

1. Transactions

2. Concurrency	&	locking

3. Atomicity	&	logging

4. Summary
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Challenges	with	Many	Users

• Suppose	that	our	CMS	application	serves	1000’s	of	users	or	more- what	are	
some	challenges?

DBMS	allows	user	to	write	programs	
as	if	they	were	the	only user

Disk/SSD	access	is	slow,	DBMS	hide	
the	latency	by	doing	more	CPU	work	
concurrently

• Security:	Different	users,	
different	roles

• Performance:	Need	to	provide	
concurrent	access

• Consistency:	Concurrency	can	
lead	to	update	problems

We	won’t	look	at	too	much	in	this	
course,	but	is	extremely important



48

Transactions

• A	key	concept	is	the	transaction	(TXN):	an	atomic
sequence	of	db actions	(reads/writes) Atomicity:	An	action	

either	completes	
entirely or	not	at	all

Acct Balance
a10 20,000
a20 15,000

Acct Balance
a10 17,000
a20 18,000

Transfer	$3k	from	a10	to	a20:
1. Debit	$3k	from	a10
2. Credit	$3k	to	a20

• Crash	before	1,
• After	1	but	before	2,	
• After	2.

Written	naively,	in	
which	states	is	

atomicity preserved?

DB Always 
preserves 
atomicity!
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Transactions

• A	key	concept	is	the	transaction	(TXN):	an	atomic
sequence	of	db actions	(reads/writes)
- If	a	user	cancels	a	TXN,	it	should	be	as	if	nothing	

happened!

• Transactions	leave	the	DB	in	a	consistent state
- Users	may	write	integrity	constraints,	e.g.,	‘each	course	is	

assigned	to	exactly	one	room’

Atomicity:	An	action	
either	completes	
entirely or	not	at	all

Consistency:	An	action	
results	in	a	state	which	
conforms	to	all	
integrity	constraints

However, note that the DBMS does not understand 
the real meaning of the constraints– consistency 
burden is still on the user!
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Challenge:	Scheduling	Concurrent	Transactions

• The	DBMS	ensures	that	the	execution	of	{T1,…,Tn}	is	
equivalent	to	some	serial execution

• One	way	to	accomplish	this:	Locking
- Before	reading	or	writing,	transaction	requires	a	lock	from	

DBMS,	holds	until	the	end

• Key	Idea:	If	Ti wants	to	write	to	an	item	x	and	Tj
wants	to	read	x,	then	Ti,	Tj conflict.		Solution	via	
locking:
- only	one	winner	gets	the	lock
- loser	is	blocked	(waits)	until	winner	finishes

A	set	of	TXNs	is	
isolated if	their	effect	
is	as	if	all	were	
executed	serially

What	if	Ti	and	Tj need	X	and	
Y,	and	Ti asks	for	X	before	Tj,
and	Tj asks	for	Y	before	Ti?
->	Deadlock!		One	is	
aborted…

All	concurrency	issues	handled	by	the	DBMS…
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Ensuring	Atomicity	&	Durability

• DBMS	ensures	atomicity even	if	a	TXN crashes!

• One	way	to	accomplish	this:	Write-ahead	logging	
(WAL)

• Key	Idea:	Keep	a	log	of	all	the	writes	done.
- After	a	crash,	the	partially	executed	TXNs are	undone	using	

the	log
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Write-ahead	Logging	
(WAL): Before	any	
action	is	finalized,	a	
corresponding	log	
entry	is	forced	to	disk

We	assume	that	the	log	is	on	
“stable”	storage

All	atomicity	issues	also	handled	by	the	DBMS…
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A	Well-Designed	DBMS	makes	many	people	happy!

• End	users	and	DBMS	vendors
- Reduces	cost	and	makes	money

• DB	application	programmers
- Can	handle	more	users,	faster,	for	cheaper,	and	with	

better	reliability	/	security	guarantees!

• Database	administrators	(DBA)
- Easier	time	of	designing	logical/physical	schema,	handling	

security/authorization,	tuning,	crash	recovery,	and	more…
Must	still	understand	
DB	internals
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Summary	of	DBMS

• DBMS	are	used	to	maintain,	query,	and	manage	large	datasets.
- Provide	concurrency,	recovery	from	crashes,	quick	application	development,	integrity,	

and	security

• Key	abstractions	give	data	independence

• DBMS	R&D	is	one	of	the	broadest,	most	exciting	fields	in	CS.	Fact!	


