
1

L01:	Course	Overview

CS	3200	sp18 s2:	Database	design
1/8/2018

2

The	world	is	increasingly	
driven	by	data…	

This	class	teaches	the	basics	of	
how	to	use	&	manage	data.

3

Increasingly	many	companies	see	
themselves	as	data	driven.

4

Key	Questions	We	Will	Answer

• How	can	we	collect	and	store	large	amounts	of	data?
- By	building	tools	and	data	structures	to	efficiently	index	and	serve	data

• How	can	we	efficiently	query	data?
- By	compiling	high-level	declarative	queries	into	efficient	low-level	plans

• How	can	we	safely	update	data?
- By	managing	concurrent	access	to	state	as	it	is	read	and	written

• How	do	different	database	systems	manage	design	trade-offs?
- e.g.,	at	scale,	in	a	distributed	environment?

5

When	you’ll	use	this	material

• Building	almost	any	software	application
- e.g.,	mobile,	cloud,	consumer,	enterprise,	analytics,	machine	learning
- Corollary:	every	application	you	use	uses	a	database
- Bonus:	every	program	consumes	data	(even	if	only	the	program	text!)

• Performing	data	analytics
- Business	intelligence,	data	science,	predictive	modeling
- (Even	if	you’re	using	Pandas	https://pandas.pydata.org/,	you’re	using	relational	

algebra!)

• Building	data-intensive	tools	and	applications
- Many	core	concepts	power	deep	learning	frameworks	to	self-driving	cars

6

Today’s	Lecture

1. Introduction,	admin	&	setup

2. Overview	of	the	relational	data	model

3. Overview	of	DBMS	topics:	Key	concepts	&	challenges

7

What	you	will	learn	about	in	this	section

1. Motivation	for	studying	DBs

2. Administrative	structure

3. Course	logistics

4. Overview	of	lecture	coverage

5. Some	thoughts	on	Pedagogy

8

Big	Data	Landscape…	Infrastructure	is	Changing

http://www.bigdatalandscape.com/

New tech.	Same Principles.

9

Some	"birth-years".	When	was	SQL	born?

• 2004:	Facebook

• 1998:	Google
• 1995:	Java,	Ruby
• 1993:	World	Wide	Web
• 1991:	Python

• 1985:	Windows

10

Some	"birth-years"

• 2004:	Facebook

• 1998:	Google
• 1995:	Java,	Ruby
• 1993:	World	Wide	Web
• 1991:	Python

• 1985:	Windows

• 1974:	SQL

11

Why	should	you	study	databases?

• Mercenary- make	more	$$$:
- Startups	need	DB	talent	right	away	=	low	employee	#
- Massive	industry…

• Intellectual:
- Science:	data	poor	to	data	rich

• No	idea	how	to	handle	the	data!
- Fundamental	ideas	to/from	all	of	CS:	

• Systems,	theory,	AI,	logic,	stats,	analysis….

Many	great	computer	systems	ideas	started	in	DB.

12

What	this	course	is	(and	is	not)

• Discuss	fundamentals	of	data	management
- How	to	design	databases,	query	databases,	build	applications	with	them.
- How	to	debug	them	when	they	go	wrong!
- Not	how	to	be	a	DBA	or	how	to	tune	Oracle	12g.

• We’ll	cover	how	database	management	systems	work	

• And	some	(but	not	all	of)	the	principles	of	how	to	build	them	

13

Who	we	are…

• Instructor	(me)	Wolfgang	Gatterbauer
- Faculty	in	the	DATA	lab	(https://db.ccis.northeastern.edu/)
- First	year	at	Northeastern!
- Taught	before	at	University	of	Washington	and	CMU's	business	school
- Research:	theoretic	foundations	for	scalable	data	management
- Office	hours:	W	2:00-4:00,	WVH 450

14

Teaching	Assistants

15

https://course.ccs.neu.edu/cs3200sp18s2/

Not:
https://course.ccs.neu.edu/cs3200sp18s3/

16

Communication	w/	Course	Staff

• Piazza

• Office	hours

• By	appointment!
TAs OHs to be listed on
the course website!

Meeting	location:	TBD:	
(either	4th floor	or	1st floor	WVH)

17

Piazza

The goal is to get you to answer each other’s questions so
you can benefit and learn from each other.

18

Please	use	this	simple	way	
to	let	me	know	what	works
or	not!

https://goo.gl/sLJJeH

Piazza	is	visible	to	everyone	
in	this	class.	This	form	only	
to	me

19

Important!

• Students	with	documented	disabilities	should	send	in	their	
accommodation	letter	from	the	Disability	Resource	Center	at	20	
Dodge	Hall	by	the	end	of	this	week	to	me.

20

Lectures

• Lecture	slides	cover	essential	material
- This	is	your	best	reference.
- We	are	trying	to	get	away	from	book,	but	do	have	pointers

• Try	to	cover	same	thing	in	many	ways:	Lecture,	lecture	notes,	homework,	
exams	(no	shock)
- Attendance	makes	your	life	easier…	

21

Attendance

• I	dislike	mandatory	attendance…	but	in	the	past	we	noticed…
- People	who	did	not	attend	did	worse	L
- People	who	did	not	attend	used	more	course	resources	L
- People	who	did	not	attend	were	less	happy	with	the	course	L

• In	previous	school:	mandatory	attendance
• This	year:	voluntary	(to	start!)	-- reserve	right	to	change

22

Graded	Elements

• Gradiance quizzes	+	participation	(10%)

• Homeworks (25%)

• Group	project	(25%)	

• Three	exams	(40%	=	10%	+	10%	+	20%)

Homeworks are	typically	
due	Wednesday	end	of	day,	
and	are	posted	at	least	1	
week	before	due	date

23

Un-Graded	Elements

• Readings	provided	to	help	you!
- Only	items	in	lecture,	homework,	or	project	are	fair	game.

• In-class	activities	are	mainly	to	help	/	be	fun!
- Will	occur	during	class- not	graded,	but	count	as	part	of	lecture	material	(fair	game	as	

well)

24

What	is	expected	from	you	

• Attend	lectures
- If	you	don’t,	it’s	at	your	own	peril

• Be	active	and	think	critically
- Ask	questions,	post	comments	on	forums

• Do	programming	and	homework	projects	
- Start	early	and	be	honest

• Study	for	exams

25

Interested	in	Research?

26

• R.	Li,	M.	Riedewald,	Xinyan Deng	
Submodularity of	Distributed	Join	Computation

Poster	presentation	at	Northeast	Database	day	2018

Paper	at	SIGMOD 2018

• R.	Li,	Aditya	Ghosh,	M.	Riedewald,	W.	Gatterbauer
Optimizing	Data	Partitioning	for	Distributed	Band	Joins

• P.	Ojha,	Paul	Langton,	W.	Gatterbauer
Scalable	Compatibility	Estimation	in	Large	Network	Data

In	progress http://queryviz.com

27

Lectures:	1st	half	- from	a	user’s	perspective

1. SQL:	Relational	data	models	&	Queries
- ~	5	lectures
- How	to	manipulate	data	with	SQL,	a	declarative	language

• reduced	expressive	power	but	the	system	can	do	more	for	you

2. Database	Design:	Design	theory	and	constraints
- ~	6	lectures
- Designing	relational	schema	to	keep	your	data	from	getting	corrupted

3. Transactions:	Syntax	&	supporting	systems
- ~	3	lectures
- A	programmer’s	abstraction	for	data	consistency

28

Lectures:	2nd	half	- understanding	how	it	works

4. Database	internals:	Query	Processing
- ~	7	lectures
- Indexing	
- External	Memory	Algorithms	(IO	model)	for	sorting,	joins,	etc.
- Basics	of	query	optimization	(Cost	Estimates)
- Relational	algebra

5. NoSQL
- ~0-2	lectures
- Key-Value	Stores
- (More	in	CS6240:	Large-Scale	Parallel	Data	Processing)

29

https://course.ccs.neu.edu/cs3200sp18s2/sched.html

30

Studying	material:	"Under	which	study	
condition	do	you	think	you	learn	better?"

Source:	Karpicke	&	Blunt,	"Retrieval	Practice	Produces	More	Learning	than	Elaborative	Studying	with	Concept	Mapping,"	Science,	2011.

Judged	performance
(=what	people	think)

Actual	performance
(=what	is	actually	working)

passive	reading active	Q&A

31
Source:	http://5.mshcdn.com/wp-content/gallery/the-year-2000-as-imagined-in-1900/future.jpg

The	year	2000	imagined	in	1900

32

Sequencing	Material:	"Under	which	teaching	
condition	do	you	think	you	learn	better?"

Source:	Bjork	&	Bjork,	"Making	things	hard	on	yourself,	but	in	a	good	way:	Creating	desirable	difficulties	to	enhance	learning," Psychology	and	the	real	world	(...),	2011.

from	the	textbook	for	70-451	MIS

33

Spaced	Repetition

1 day 3 days 1 week 1 month 6 months

correct

incorrect

Ebbinghaus	
Forgetting	Curve

Leitner	System	
(Pimsleur's	graduated
interval	recall)

Sources:	http://www.wired.com/2008/04/ff-wozniak/,			Gatterbauer	&	Suciu,	"Managing	Structured	Collections	of	Community	Data,"	CIDR	2011.

34

The	"Surfer	Analogy"	for	time	management

Source:	http://stwww.surfermag.com/files/2013/10/Yak_Charlie-970x646.jpg

35

Today’s	Lecture

1. Introduction,	admin	&	setup

2. Overview	of	the	relational	data	model

3. Overview	of	DBMS	topics:	Key	concepts	&	challenges

36

What	you	will	learn	about	in	this	section

1. Definition	of	DBMS

2. Data	models	&	the	relational	data	model

3. Schemas	&	data	independence

37

What	is	a	DBMS?

• A	large,	integrated	collection	of	data

• Models	a	real-world	enterprise
- Entities	(e.g.,	Students,	Courses)
- Relationships	(e.g.,	Alice	is	enrolled	in	145)

A	Database	Management	System	(DBMS) is	a	
piece	of	software	designed	to	store	and	
manage	databases

38

A	Motivating,	Running	Example

• Consider	building	a	course	management	system	(CMS):

- Students
- Courses
- Professors

- Who	takes	what
- Who	teaches	what Relationships

Entities

39

Data	models

• A	data	model is	a	collection	of	concepts	for	describing	data

- The	relational	model	of	data is	the	most	widely	used	model	today
• Main	Concept:	the	relation- essentially,	a	table

• A	schema is	a	description	of	a	particular	collection	of	data,	using	the	
given	data	model

- E.g.	every	relation	in	a	relational	data	model	has	a	schema	describing	types,	
etc.

40

Bruce	Lindsay,	IBM	Research

As	quoted	in:	https://dl.acm.org/citation.cfm?id=1083803

“Relational	
databases	are	the	
foundation	of	
western	
civilization”

41

Modeling	the	CMS

• Logical	Schema
- Students(sid:	string,	name:	string,	gpa:	float)
- Courses(cid:	string,	cname:	string,	credits:	int)
- Enrolled(sid:	string,	cid:	string,	grade:	string)

sid Name Gpa
101 Bob 3.2
123 Mary 3.8

Students

cid cname credits
564 564-2 4
308 417 2

Coursessid cid Grade
123 564 A

Enrolled

Relations

42

Modeling	the	CMS

• Logical	Schema
- Students(sid:	string,	name:	string,	gpa:	float)
- Courses(cid:	string,	cname:	string,	credits:	int)
- Enrolled(sid:	string,	cid:	string,	grade:	string)

sid Name Gpa
101 Bob 3.2
123 Mary 3.8

Students

cid cname credits
564 564-2 4
308 417 2

Coursessid cid Grade
123 564 A

Enrolled

Corresponding
keys

43

Other	Schemata…

• External	Schema:	(Views)
- Course_info(cid:	string,	enrollment:	integer)
- Derived	from	other	tables

• Logical	Schema:	Previous	slide

• Physical	Schema:	describes	data	layout
- Relations	as	unordered	files
- Some	data	in	sorted	order	(index)

Administrators

Applications

44

Data	independence

• Concept:	Applications	do	not	need	to	worry	about	
how	the	data	is	structured	and	stored

44

Logical	data	independence:
protection	from	changes	in	the	
logical	structure	of	the	data

Physical	data	independence:
protection	from	physical	layout	
changes

One	of	the	most	important	reasons	to	use	a	DBMS

I.e. should not need to ask: can
we add a new entity or attribute
without rewriting the application?

I.e. should not need to ask:
which disks are the data stored
on? Is the data indexed?

45

Today’s	Lecture

1. Introduction,	admin	&	setup

2. Overview	of	the	relational	data	model

3. Overview	of	DBMS	topics:	Key	concepts	&	challenges

46

What	you	will	learn	about	in	this	section

1. Transactions

2. Concurrency	&	locking

3. Atomicity	&	logging

4. Summary

47

Challenges	with	Many	Users

• Suppose	that	our	CMS	application	serves	1000’s	of	users	or	more- what	are	
some	challenges?

DBMS	allows	user	to	write	programs	
as	if	they	were	the	only user

Disk/SSD	access	is	slow,	DBMS	hide	
the	latency	by	doing	more	CPU	work	
concurrently

• Security:	Different	users,	
different	roles

• Performance:	Need	to	provide	
concurrent	access

• Consistency:	Concurrency	can	
lead	to	update	problems

We	won’t	look	at	too	much	in	this	
course,	but	is	extremely important

48

Transactions

• A	key	concept	is	the	transaction	(TXN):	an	atomic
sequence	of	db actions	(reads/writes) Atomicity:	An	action	

either	completes	
entirely or	not	at	all

Acct Balance
a10 20,000
a20 15,000

Acct Balance
a10 17,000
a20 18,000

Transfer	$3k	from	a10	to	a20:
1. Debit	$3k	from	a10
2. Credit	$3k	to	a20

• Crash	before	1,
• After	1	but	before	2,	
• After	2.

Written	naively,	in	
which	states	is	

atomicity preserved?

DB Always
preserves
atomicity!

49

Transactions

• A	key	concept	is	the	transaction	(TXN):	an	atomic
sequence	of	db actions	(reads/writes)
- If	a	user	cancels	a	TXN,	it	should	be	as	if	nothing	

happened!

• Transactions	leave	the	DB	in	a	consistent state
- Users	may	write	integrity	constraints,	e.g.,	‘each	course	is	

assigned	to	exactly	one	room’

Atomicity:	An	action	
either	completes	
entirely or	not	at	all

Consistency:	An	action	
results	in	a	state	which	
conforms	to	all	
integrity	constraints

However, note that the DBMS does not understand
the real meaning of the constraints– consistency
burden is still on the user!

50

Challenge:	Scheduling	Concurrent	Transactions

• The	DBMS	ensures	that	the	execution	of	{T1,…,Tn}	is	
equivalent	to	some	serial execution

• One	way	to	accomplish	this:	Locking
- Before	reading	or	writing,	transaction	requires	a	lock	from	

DBMS,	holds	until	the	end

• Key	Idea:	If	Ti wants	to	write	to	an	item	x	and	Tj
wants	to	read	x,	then	Ti,	Tj conflict.		Solution	via	
locking:
- only	one	winner	gets	the	lock
- loser	is	blocked	(waits)	until	winner	finishes

A	set	of	TXNs	is	
isolated if	their	effect	
is	as	if	all	were	
executed	serially

What	if	Ti	and	Tj need	X	and	
Y,	and	Ti asks	for	X	before	Tj,
and	Tj asks	for	Y	before	Ti?
->	Deadlock!		One	is	
aborted…

All	concurrency	issues	handled	by	the	DBMS…

51

Ensuring	Atomicity	&	Durability

• DBMS	ensures	atomicity even	if	a	TXN crashes!

• One	way	to	accomplish	this:	Write-ahead	logging	
(WAL)

• Key	Idea:	Keep	a	log	of	all	the	writes	done.
- After	a	crash,	the	partially	executed	TXNs are	undone	using	

the	log

51

Write-ahead	Logging	
(WAL): Before	any	
action	is	finalized,	a	
corresponding	log	
entry	is	forced	to	disk

We	assume	that	the	log	is	on	
“stable”	storage

All	atomicity	issues	also	handled	by	the	DBMS…

52

A	Well-Designed	DBMS	makes	many	people	happy!

• End	users	and	DBMS	vendors
- Reduces	cost	and	makes	money

• DB	application	programmers
- Can	handle	more	users,	faster,	for	cheaper,	and	with	

better	reliability	/	security	guarantees!

• Database	administrators	(DBA)
- Easier	time	of	designing	logical/physical	schema,	handling	

security/authorization,	tuning,	crash	recovery,	and	more…
Must	still	understand	
DB	internals

53

Summary	of	DBMS

• DBMS	are	used	to	maintain,	query,	and	manage	large	datasets.
- Provide	concurrency,	recovery	from	crashes,	quick	application	development,	integrity,	

and	security

• Key	abstractions	give	data	independence

• DBMS	R&D	is	one	of	the	broadest,	most	exciting	fields	in	CS.	Fact!	

