
CS3000
Summer 2023
Data Structure Overview

Overview of a few common structures, their basic run-time complexities, and how you might evaluate
when and whether they are good choices.

Summary of General Run-Time Complexities

Structure Find Insert Delete, Once Found

Array (unsorted) O(n) O(1) O(n)

Array (sorted) O(lg n) O(n) O(n)

Linked List O(n) O(1) O(1)

Binary Tree O(n) O(n) O(n)

BST (general) O(h) O(h) O(h)

BST (balanced) O(lg n) O(lg n) O(lg n)

Hash Tables O(1) O(1) O(1)

Specialized Structures

Structure Insert Remove

Stack O(1) O(1)

Queue O(1) O(1)

Heap O(lg n) O(lg n)

Graphs

Graph Type Add Vertex Add Edge Find Vertex Find Edge

Adjacency List O(1) to add
to the
vertices
array

O(1) O(|V|) O(|E|), if you know
which linked list to
look in

Adjacency Matrix O(1)

O(|V|) if
we’re also
concerned
with

O(1) O(|V|) O(|V|), if you’ve found
one vertex and need to
see if it’s adjacent to
another

O(1), if you’ve found

1

initialized all
its relevant
edges to the
null edge

both vertices and
know their positions in
the matrix

Comparison of Usefulness
Choosing the right data structure for the problem you’re trying to solve is rarely straightforward.
Sometimes a specific data structure is just right for everything you need; for example, if your
algorithm needs the data to respect FIFO order, then it should be pretty obviously to use a queue.

However, it is often the case that many different data structures could be used Some will just be able
to solve the problem more efficiently. So if there are many possibilities open to you, consider what
kinds of operations you’ll be needing the most. Consider whether your data will be relatively static, or
grow and shrink unpredictably. Consider which one is easier to implement and use. All of these
factors can come into play.

Structure Good When... Bad When...

Array You need random access (indexing)
to elements by position.

You know the number of elements
you’ll need.

You need to sort your data, once,
after it’s all been inserted (and then
you can do binary search).

After populating the array once,
you do a lot of deletes.

You need to search for specific
elements.

You don’t know the number of
elements you’ll need, and you end
up over-allocating or needing to
expand.

Linked List Your data dynamically grows and
shrinks.

You need random access to
elements by position.

You want to do binary search,
which doesn’t work with Linked
Lists.

Stack You need expression evaluation and
syntax parsing.

You’re interested in elements with
a certain value or position

Queue You need to respect the order in
which data was inserted.

You’re interested in elements with
a certain value or position

Heaps You need to have easy access to the
min or max (O(1) to find it).

You need your data set completely
ordered, not partially ordered.

Binary Search Tree Your data needs to be sorted, and you
do a lot of searches.

You love recursion.

Your data might be inserted in an
ordered way, making the tree
unbalanced. Switch to an AVL tree
in this case.

2

And pointers.

Graphs You have a complex “real world”
problem to solve, like finding
shortest paths.

Your data lends itself to a
parent/child structure.

Hash Tables You want to use an array, but they’re
too slow. You want fast access to
your data, and you want to be able to
delete efficiently.

You need your data to be ordered.

Your data + hash function
combination result in many
collisions.

3

