CS3000: Algorithms & Data — Summer '23 — Laney Strange

Ford-Fulkerson Algorithm

The Ford-Fulkerson algorithm computes the value of the max flow in a flow network G. G is a directed, weighted graph with a source vertex s and sink vertex t. Instead of attaching attributes to vertices as we've done in some other graph algorithms, we attach an attribute f to each edge (u, v) of the graph. The f attribute for a given edge indicates the flow on that edge so far.

Each edge (u, v) also has a capacity c(u, v). As long as there is an augmenting path from s to t, with available capacity on all edges in the path, we send flow along one of the paths. Then we find another path, and so on.

```
FORD-FULKERSON(G, s, t)
   for each edge (u, v) \in G.E
2
         (u, v).f = 0
3
   while there exists a path p from s to t in the residual network G_f
         c_f(p) = \min\{c_f(u, v) : (u, v) \text{ is in } p\}
4
5
         for each edge (u, v) in p
6
              if (u,v) \in G.E
                   (u,v).f = (u,v).f + c_f(p)
7
8
              else
                   (v, u).f = (v, u).f - c_f(p)
9
```

We typeset the Ford-Fulkerson procedure above with the following LATEX:

```
\begin{codebox}
\Procname{$\proc{Ford-Fulkerson}(G, s, t)$}
\li \For each edge $(u, v) \in G.E$
\Do
\ln (u,v).f = 0
\End
\li \While there exists a path $p$ from $s$ to $t$ in the residual network $G_f$
\Do
\ \c_f(p) =  \min {c_f(u,v) : (u,v) $ is in $p}$
\pi \ in $p$
\Do
\left( i \right) f (u,v) \in G.E
\Then
li $(u,v).f \leq (u,v).f + c_f(p)$
li $(v,u).f \leq (v,u).f - c_f(p)$
\End
\End
\end{codebox}
```