CS3000: Algorithms & Data — Summer 2023 — Laney Strange

Exam 2 Practice Problems

¢ These practice problems are to help you prepare for Exam 2. We’ll release the solutions on
Tuesday (June 13) so you can go over them and ask questions in your recitation.

¢ Exam 2 takes places during lecture on June 15, 2023.

* The exam will be due at the end of lecture (11:30am). You'll hand it in on paper, but we’ll
scan it later for grading on gradescope.

* You may bring one 8.5x11-inch paper as a cheat sheet, with anything written or typed on it
(one side only). You will submit this cheat sheet along with your exam, and you will not be
permitted to use any other materials or notes during the exams.

¢ If you have a DRC accommodation for exams, please arrange to take the exam at their center.
Make sure you schedule that time ASAP if you haven't yet!



Pseudocode For Reference

For the real exam, we'll copy-paste relevant pseudocode that you might need for reference, or that
we ask you to modify. For these practice problems, we’ll just link instead. Any of the following
might come in handy while you work through the problems.

e BFS

Topo and DFS

Kruskal
e Prim

¢ Dijkstra’s

Floyd Warshall


https://course.ccs.neu.edu/cs3000/resources/BFS_Pseudocode_.pdf
https://course.ccs.neu.edu/cs3000/resources/Topological_Sort_Pseudocode.pdf
https://course.ccs.neu.edu/cs3000/resources/Kruskal_Pseudocode.pdf
https://course.ccs.neu.edu/cs3000/resources/Prim_Pseudocode.pdf
https://course.ccs.neu.edu/cs3000/resources/Dijkstra_Pseudocode.pdf
https://course.ccs.neu.edu/cs3000/resources/Floyd_Warshall_Pseudocode.pdf

Problem 1. Greedy

Humpty Dumpty has fallen off the wall, and broken into n different pieces. All the king’s horses
are trying to put Humpty back together, but they need to make sure they have enough tape to
repair him.

Humpty broke into n fragments of various sizes sy,s,,...,s,. Since bigger fragments are heavier,
they need more tape to stick together. When we put two fragments with sizes s; and s; back
together, we replace the two fragments with a single fragment of size s; = s; +s;, and we use s; +s;
pieces of tape. We would like to completely put Humpty Dumpty back together, i.e. end with a
single fragment, using the least amount of tape possible.

(a) Assume for this part that Humpty is size 38, and split into n = 4 pieces with sizes [4,5,7,12].
What is the least amount of tape we can use to put Humpty together, and in what order do
you connect the fragments?

Solution:

(b) For the general case, if you tackle this problem with a greedy approach, what would your
greedy choice be at each step?

Solution:

(c) Give pseudocode for your greedy strategy. Your algorithm will take as input the value n > 0
and a min-heap of positive integers [sy,...,s,], with each integer representing the size of a
fragment. Your algorithm should return the value of an optimal solution (i.e., the total amount
of tape used for a Humpty of size n).

Solution:



Problem 2. Amortized Analysis

In lecture we saw that when inserting into an unsorted array which is full we can create a new
array with double the capacity and copy the old array’s contents into a new array in order to obtain
O(1) amortized cost for insertion. For this problem, we’ll add a delete operation into the mix.

You may assume that we will always insert and delete the rightmost element of the array.

1. As a first approach, we can halve the array any time the capacity would not be exceeded. For
example, if an array with capacity 2n has its (n + 1)-th element removed, we can create a new
array with capacity n and copy the remaining n elements of the old array.

However, this approach doesn’t give us an amortized O(1) cost per operation. Give a
counterexample of a sequence of k operations that would result in O(k?) run-time.

Solution:

2. Let’s try a better approach. Now, we halve the capacity of the array any time the number
of elements does not exceed a quarter of the total capacity. For example, if an array with
capacity 4n has its (1 + 1)-th element removed, we can create a new array with capacity 2n
and copy the remaining n elements of the old array.

Argue that this results in O(1) amortized cost over the operations, by showing that any
sequence of k insert/delete operations has an aggregate time at most O(k). (Hint: Anytime
we complete an “expensive” insert/delete, we get an array with roughly double the capacity
of its contents. Argue that before the next expensive operation, we must have performed at
least O(k) “cheap” operations.)

Solution:



Problem 3. Which Graph Algo

For each problem on the left, give the best matching algorithm that could solve the problem from
the right.

(1) The best way to lay out train tracks, if n cities (a) Breadth-
need to have a station and you want to minimize First Search

the total amount of track used.
(b) Topological

(2) An order in which you can take classes with Sort

pre-requisites. .
(c) Minimum

(3) The fastest route to get from school to home. Spanning

Tree
(4) How can an airline guarantee that they fly to all

the places they say in their ads, but with as few | (d) Dijkstra’s
flights as possible. Algorithm

(5) The fewest number of clicks to get from one web (e) APSP Algo-
page to another. rithm

(6) The cheapest flight you can take, including pos-
sible stopovers, to get from Boston to Vancouver.

Solution:



Problem 4. Breadth First Search

This problem is concerned with the unweighted, undirected graph below.

(a) What would the d and 7 values be of the vertices after the BFS algorithm runs, assuming we
use 1 as the starting vertex?

Vertex‘1‘2‘3‘4
d
I

Solution:

(b) Give pseudocode for a function that, given a graph G, starting vertex s, and destination vertex
v, would print out the shortest path from s to v using the vertices” d and 7 values. Your
function should print “no path exists” if there is no path from s to v. (Hint: we recommend a
recursive algorithm!)

Solution:



Problem 5. DFS and SSSP

Recall that Dijkstra’s algorithm works on a directed, weighted graph with non-negative weight
edges. We can find a solution to SSSP more simply than Dijkstra’s if we know that our graph is
directed and acyclic, by changing the order in which we explore the vertices.

(a) What are the DFS finish times on the DAG below, assuming we start with vertex 1 and break
ties in numerical order?

vertex |1/2/3 4
finish time

Solution:

(b) Finish the pseudocode below, so that it Relaxes the edges of the graph above, once you've
found the DFS finish times. We can assume vertex 1 is the source.

DAG-RELAX(G,w,s)
1 sort the vertices of G by descending DFS finish time

Solution:

(c) What would the d and 7t values be for each vertex in the above graph after your algorithm
runs?

vertex|1 2|34

d
TC




Solution:

(d) Has your algorithm correctly found the shortest path from vertex 1 to all other reachable

vertices?

Solution:

(e) Would your algorithm correctly find the shortest path from vertex 1 to all other vertices, if the

graph had negative-weight edges?

Solution:



Problem 6. SSSP

You are given a connected, undirected graph G and a starting vertex s, and you want to compute a
SSSP solution. However, the weights of this graph are on vertices rather than edges; the weight
function w(u) returns the weight of a vertex u. The length of a path is the sum of the weights on
the vertices comprising the path. The vertex weights are non-negative.

Suppose you construct a new directed graph G’ with the same vertices as G.V and two edges
(u,v) and (v,u) for every undirected edge in G. You define the edge-weight function w in G’ as
w(u,v) = w(v) from the original graph G. You want to run Dijkstra’s on G’ to find the shortest paths
in G.

(a) If you have a shortest path from s to some vertex v in G, what would be the equivalent
shortest path from s to v in G”?

Solution:

(b) If the weight of a shortest path from s to some vertex v in G’ is w,, what would be the weight
of the equivalent shortest path from s to v in G?

Solution:



Problem 7. MST - Kruskal

This problem is concerned with the graph below. Recall that Kruskal’s algorithm sorts edges by
weight in increasing order. It adds an edge (u,v) to the MST A if (u,v) is safe, i.e., u and v are not in
the same set.

(a) List the edges that would be contained in the final set A in Kruskal’s algorithm, in the order
in which they are added to A.

Solution:
(b) What is the total weight of the MST generated by Kruskal’s algorithm?

Solution:

(c) Suppose all the edge weights in the graph above are inverted, i.e., the new weight w’ would
be w’(u,v) = -1 w(u,v). Now we have all negative-weight edges. Would Kruskal’s correctly
computed an MST without any changes to the algorithm? What total weight would you get
from running Kruskal on this new graph?

Solution:

10



Problem 8. MST - Prim

This problem is concerned with the graph below. Recall that Prim’s algorithm adds edges to an
MST such that, at any step, it has built a tree. It maintains a key (weight) and 7 (predecessor) value
for each vertex.

(a) List the key and 7t values that would be assigned to each of the vertices in the above graph,
after Prim’s algorithm has completed, assuming it starts at source vertex s.

S |A|B|C|DJE

7w | NIL
key
Solution:

(b) What is the total weight of the MST generated by Prims’s algorithm?
Solution:

(c) Suppose each undirected edge (1, v) in the above graph is replaced by a directed edge (u,v),
such that the directed edge (u,v) exists if v is later alphabetically than u. All the weights
stay the same. For example, (c,d) would be a directed edge with weight 3. (b,s) would be a
directed edge with weight 2, etc. Would your solution from Part B still be optimal in the sense
that we could touch all the vertices (with an incoming and/or outgoing edge) for the same
total weight?

Solution:

(d) Would Prim’s algorithm still correctly compute that solution without any changes to the
algorithm, if we start at vertex s? Justify your answer by describing how the algorithm would
assign key and/or 7 values to each vertex. Solution:.

11



Problem 9. Sink Vertex

A directed graph G is said to contain a universal sink if there exists some vertex v with (1) no
outgoing edges, and (2) incoming edges from every vertex except itself.

(a) Give pseudocode for an algorithm that determine whether a particular vertex, 7, is a universal
sink. Your algorithmm should accept the graph G as an input, along with i. It should return
a boolean indicating whether i is a universal sink. Assume that your graph is stored as an
adjacency matrix.

Solution:

(b) What would the run-time be for the entire graph if you call your function above once per
vertex?

Solution:

(c) TRUE or FALSE: If your adjacency matrix has A[i, j] = 1 for some i, j, can we conclude that the
ith vertex cannot be a sink.

Solution:

(d) TRUE or FALSE: If your adjacency matrix has A[i, j] = 0 for some i, j, can we conclude that the
ith vertex cannot be a sink.

Solution:

12



Problem 10. APSP

The Floyd-Warshall algorithm has space complexity ©(V?3). Write a new version of the pseu-
docode below that requires only ©(V?) space. The run-time will still be cubic, but the space
requirements are improved. (You can assume the first part of the code, where we initialize D'?), is
the same.)

Solution:

13



Problem 11. Max Flow

One greedy approach to Max Flow would repeatedly find a path from the source s to the sink ¢. If
the path exists, then find the minimum-capacity edge on that path, increase flow on all edges of the
path, and then remove those edges from consideration.

(a) Give an example of a directed graph, with capacities on each edge, for which that Greedy
choice would not find an optimal solution. Solution:

(b) In your graph above, what solution would the Greedy approach give you?

Solution:

(c) What would the optimal solution be for your example?

Solution:

14



