
CS3000: Algorithms & Data — Summer ’23 — Laney Strange

Binary Search (with a BST)

We went over the Binary Search algorithm in class; this handout is so you can see the function
typeset in the CLRS pseudocode style. In this version, the function takes in a Binary Search Tree x
and looks for a key . It returns True if the key is found in the tree and False otherwise.

We identify a tree through its root, x. The root (and every node) has a value, which we’ll call
x .value. Because x is a binary search tree, all the values in its left subtree are smaller than x .value
and all the values in its right subtree are greater than x .value.

We won’t worry about how the tree got created, just the algorithmic step of searching for a key in
the tree. We’ll make the following assumptions:

• The BST is balanced

• We access a tree x by its root.

• x .left is x’s left subtree

• x .right is x’s right subtree

• All the values are distinct

BinarySearch(x, key)

1 if x == Null
2 return False
3 elseif x .value == key
4 return True
5 elseif key < x .value
6 return BinarySearch(x .left , key)
7 else
8 return BinarySearch(x .right , key)

Here’s how we typeset the above function in CLRS style:

\begin{codebox}

\Procname{$\proc{BinarySearch}(x, \id{key})$}

\li \If $x == \const{Null}$

\Then

\li \Return \const{False}

\li \ElseIf $\id{x.value} == \id{key}$

\Then

\li \Return \const{True}

\li \ElseIf $\id{key} < \id{x.value}$

\Then

\li \Return $\proc{BinarySearch}(\id{x.left}, \id{key})$

\li \Else

\li \Return $\proc{BinarySearch}(\id{x.right}, \id{key})$

\end{codebox}

1

