CS3000: Algorithms & Data — Summer 23 — Laney Strange

Binary Search (with a BST)

We went over the Binary Search algorithm in class; this handout is so you can see the function
typeset in the CLRS pseudocode style. In this version, the function takes in a Binary Search Tree x
and looks for a key. It returns TRUE if the key is found in the tree and FALSE otherwise.

We identify a tree through its root, 2. The root (and every node) has a value, which we’ll call
xz.value. Because x is a binary search tree, all the values in its left subtree are smaller than x.value
and all the values in its right subtree are greater than x.value.

We won’t worry about how the tree got created, just the algorithmic step of searching for a key in
the tree. We’ll make the following assumptions:

e The BST is balanced

e We access a tree x by its root.
o z.left is x’s left subtree

e z.7ight is a’s right subtree

All the values are distinct

BINARYSEARCH(z, key)

if x == NULL
return FALSE
elseif z.value == key

return TRUE
elseif key < x.value

return BINARYSEARCH(z.left, key)
else

return BINARYSEARCH(z.7ight, key)

0O 3 O U i W N+

Here’s how we typeset the above function in CLRS style:

\begin{codebox}
\Procname{$\proc{BinarySearch}(x, \id{key})$}
\1i \If $x == \const{Nulll}$

\Then

\1i \Return \const{False}

\1i \ElseIf $\id{x.value} == \id{key}$
\Then

\1i \Return \const{True}

\1i \ElseIf $\id{key} < \id{x.valuel}$

\Then

\1i \Return $\proc{BinarySearch}(\id{x.leftl}, \id{key})$
\1i \Else

\1li \Return $\proc{BinarySearch}(\id{x.right}, \id{key})$
\end{codebox}

