CS3000 5/22- Mon.

Admin

- · Long HWD are tom. 9pm
- · Rec tom., no problem set -> come with guestions!
- · rext Hw- Long 3, out thos, are [5/8]
- · (racking the coding interier -> 04

Agenda

- (, Scheduling problem
- 2. DP solution to schealing
- 3. Greedy Solation to Schealing

Recap

DP mostly for optimization problems

Optimal Substructure? Solution to a subproblem is

Optimal Substructure? Solution to a subproblem is

Optimal Substructure? Solution to bigger problem

Optimal Substructure?

Optimization optimization

Optimization problems

Optimization

1. Schealing Problem

Activities that require use of a shared resource.
Only one authory can use the resource at a time.

ex

- · 7 ccess to 2 classon
- · 2 Soccer field
- · 05 resurces (ex- (pu)

Schedling details

S = {2,72,...,2n} Set of activities
that went to use
the resone

Every 2; has:

- · Si (start time)
 - · fi (finish time)
 - · another activity can start at et or after a: finishes

Activities a_i, a_j are compatible if $S_i \ge f_j$ or $S_j \ge f_i$

unzt ou are we trying to optimize for?

· least amount of unused time

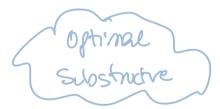
A most amont of activities &

· least amount of time to run the activities

Define Set Sij = Set of campatible activities
that start after ai finishes
and
finish before aj starts

Gozl: maximize (Sij) -> aptimization prodem!

Solled by finish time!


Gozl: maximize (Sij) (optimal Sij)

(ex) $S_{1,5} = \frac{2}{3}a_{3}, a_{4}, a_{5}, a_{6} \xrightarrow{3} \rightarrow \text{Start after } a_{1}$ $\frac{2}{3}a_{1}, a_{2}, a_{3} \xrightarrow{3} \rightarrow \text{Start after } a_{5}$ $= \frac{2}{3}a_{3} \xrightarrow{3}$

What is
$$S_{1,6}$$
? $\frac{3}{2}z_{3}, z_{5}$? $|S_{1,6}| = 2$

$$S_{1,3} = 23$$
 $\rightarrow (1)$
 $S_{3,6} = 2253$

$$S_{1,6} = S_{1,3} + S_{3,6} + R_3$$

2. OP Scheduling solution

ood formia ood

- · Build a C table
- · C[i,i] = |Sij| for the best aptimal Sij

C[i,j] =
$$\begin{cases} D & \text{if } |S_{ij}| = 0 \\ max & \text{of } z_{k} \in S_{ij} : C[i,k] + C[k,j] + 1 \end{cases}$$

i	l	2	3	પ્	5	6	_
Si	Z	7	3	3	6	12	
		6					

ex: Ctable for I

	(2	3	4	5	6	
,	0	6	0	0	1 (3)	2 (3,5)	
2		0	6	0	0	1 (5)	
3			0	0	0	(s)	-
)				0	0	0	_
4	-				0	O	
5 6						0	
$\boldsymbol{\omega}$		1					\Box

Run-time: $\theta(n^3)$ - better tran bortetare! Space: $\theta(n^2)$

(an we do better?

10:47

3, Greedy Solution to Scheduling

naive -> d'videt conquer -> DP -> Creedy

Algorithmic techniques

Creedy

- · 2 ways make the current best choice
- · don't solve subproblems
- · den't think recursively
- · Simple to implement!
- · avesn't always work !
- · 18 it efficient? (TBD)
- . Tends to be used for aphimization problems

Today's problem: Schedling

- · aptimal (max) # of activities
- · greedy: at any one time, pick the best comparishe activity
- · Atways have a set S = set of compatible activities
- · 2t 2ng Step, pick the best companible activity and add to the set

Unat is the best activity to choose?

- Best = leaves most resames available = earliest finish time (more than one way thought.)

Activity Alguithm:

· input: two emays, S and f Uster Strings times

(correspond with each star! a; has 66'3 start time f (i7 finish time)

· returns: Set of activities (hapefully aptimal)

ACTIVITY (s, f)

// sort s and f by first time -> pre process

S = 213 -> 2, hz= earliest first time

K = 1 -> index of zetming we just added

for m = 2 to 6. length -> iterate are activities

if stand = fixth -> Fand compatible activity

S = S U 2m3 3 3 -> update set 5

X = m 2nd index k

return S

-> return set of activity charges

i	1	2	3	પ્	5	6	- 6x
Si	Z	l	3	3	6	12	
E	3	6	6	8	10	14	-> [already serred!
	-		>			-	

5 hopefuly the rensur!

Steps of algo:

is 2 campatible? no!

m = 3S= {133 is 3 Compatible? Yeal. m=4 is 4 compatible? no! m=5 S= 213,53 is 5 compatible? Yes! m=6 S= {1,3,5,6} 156 Campatible? Yes. retured Did we get an aphinol southin? (Yes) Run time? SOG + LOOP -> Band by Sorth D(n(gn) + 0 (n) (Algn) (00) untime is O(n), assuming data is awady sorted

Does this really work, or was ar input wocky?

- · greedy doesn't zeerbys work
- · But in this case it away where we soft by earliest finish time

How do we know it works

Sx is any subproblem (K En)
Sx hos am as earliest finish time

Let Ax be optime solution to Sx

- · 18 2m EAE? Dere!
- = 15 2m #AK?

Let 2; EAR with exhibit finish time

(an we swap out 2; and replace with 2m?

Yed!

Fim] \(\int \int \int \);

Zon dool so can't contact with an

2 citivity if 2; didn't conflict.

So, we have aptimere soution $A_{K} = A_{K} - \{z_{j}\} \cup \{z_{m}\}$

activity with earliest finish time is autien