LS3000 May 18th - Thurs '! Admin · Short HW2 are 9pm · Long HW2 out, are \$435728 9pm · Optional rectoday (3:20 on 2020) · 5/23 last day to submit rec 1-2. Agendia I. LCS Joze Solution (length + what) 2. LS implementation 3. Exam summary

1. LCS Goze Solution

Coal solution: Lis-Length

$$X = \langle A, B, \zeta, O \rangle$$

 $Y = \langle A, E, B, P, H \rangle$
Defined: C table
 $x_i = \langle A, E, B, P, H \rangle$
 $Y_i = \langle A, E, B, P, H \rangle$
 $Y_i = \langle A, E, B, P, H \rangle$
 $Y_i = \langle A, E, B, P, H \rangle$
 $Y_i = \langle A, E, B, P, H \rangle$
 $Y_i = \langle A, E, B, P, H \rangle$
 $Y_i = \langle A, E, B, P, H \rangle$
 $Y_i = \langle A, E, B, P, H \rangle$
 $Y_i = \langle A, E, B, P, H \rangle$
 $Y_i = \langle A, E, B, P, H \rangle$
 $Y_i = \langle A, E, B, P, H \rangle$
 $Y_i = \langle A, E, B, P, H \rangle$
 $Y_i = \langle A, E, B, P, H \rangle$
 $Y_i = \langle A, E, B, P, H \rangle$
 $Y_i = \langle A, E, B, P, H \rangle$
 $Y_i = \langle A, E, B, P, H \rangle$
 $Y_i = \langle A, E, B, P, H \rangle$
 $Y_i = \langle A, E, B, P, H \rangle$
 $Y_i = \langle A, E, B, P, H \rangle$
 $Y_i = \langle A, E, H \rangle$
 $Y_i = \langle A, H \rangle$
 $Y_i =$

We want to create:

- · c table: length of LCS
- · b table: how to re-create an LCS

Is Filled with 2000s

\checkmark	go to (21-1, 5-1]	(ni, yi are same!)
Ę	go to Ei, j-13	(~i ≈ y;)
\uparrow	50 to Zi-1, j]	(تد: يح برن)

Create the LCS once we have b table

- · start in bottom-night
- · see 5, that element in LCS, so print and

· follow the zraw

$$\begin{cases} 0 & if i=0 \text{ or } j=0 \quad (base case) \\ S (\Sigma_{i-1,j-1}^{j}+1) & if x_{i}=y_{j} \\ (max((\Sigma_{i-1,j}^{j}, C_{i}^{j}, j-1)) & if x_{i}=y_{j}. \end{cases}$$

Reconsider formula
Simplementation
Bottom up just favor on
LLS-Length
$$(X, Y, m, n)$$
 let (x, Y, m, n)
let $(x_0: m, 0:n]$ be a new table \longrightarrow space
for $i = 1$ to m
 $(x_0: n, 0:n]$ be a new table \longrightarrow space
 x_{10} cation
for $i = 1$ to m
 $(x_0: n, 0:n]$ be a new table \longrightarrow space
 x_{10} cation
for $i = 1$ to m
 $(x_0: n, 0:n]$ be a new table \longrightarrow space
 x_{10} cation
for $i = 1$ to m
for $i = 1$ to m
for $i = 1$ to m
 $for i = 1$ to

return C

0(n2 Ron-time: $\Theta(m\cdot n)$ Space for c table: $\Theta(m\cdot n)$ 20 0°E \ • ١

- · state band on non time
- · Given 2 recursive form-lay fill in the table

- Prove convectness ' loop inveriant
 by induction
- · given 2 DP table, what is answer
- · given reusire binua, write presdocal
- · come up with pseudocode for an zego sithm
- · compare no times
- . In times of known regos

Prepartion

- · practice problems (Sat)
- next tres. recitation exam prep
- · Next wears Class prep