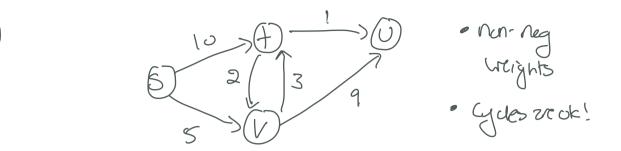
CS3000 G17-Weds Admin • Short 3 are tun. 9pm • Long Hws out tom. -s last Long Hw? • Fun aptrioned reitation turn. Agenda I. SSSP

- 2. Dijkstas Algorithm
- 3. Dijkstæ's proof

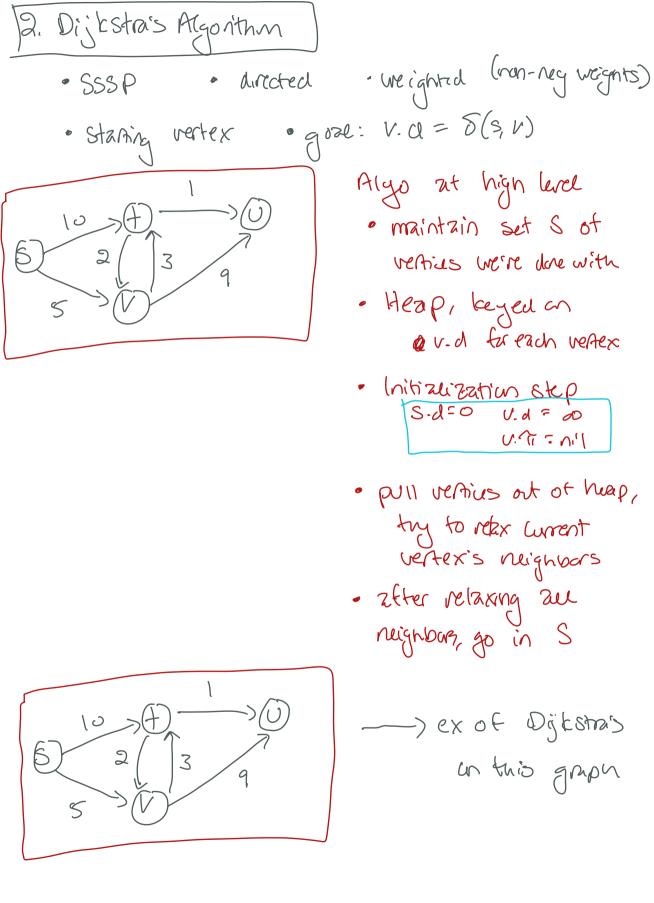


(l K

path from s to t
(s,t) is a valid path
$$W(s,t) = 10$$

(s,v,t) is a valid path $W(<_{3}v,t_{3}) = 5^{+}3^{-}8$
but better!

actual shortest path



Heap	vertex	Set S	venex attributes
$S_1 + 0, V$	Lectracreed 5	zs?	f.d=10 t.g=s V.d=5 V.g=s
+,0,v	\checkmark	25,V3	U.d=14 U.M=V T.d=8 t.m=V
<i>t</i> , U	t	25, V, T3	U = 9 U = T
U	\bigcirc	えら, V, T, Uえ	V. 1 = 5 V. 17 = S
d T	50 a n'1 t	V 5 8 3 V	
1			(0:53)

How do we know that when we add a vertex to S we here need to yourst it again?

3. Dijkstris Proof
V.d - distance assigned by 2230

$$\delta(s,v)$$
 - distance of achae shorest path
want: $(v.d = \delta(s,v))$ for every reachable vortex from s
this is set before v is added to set S
(f) for any $v, v.d \ge \delta(s,v)$
(f2) S-(0) (0) actual shorest path
 u,v gets relaxed
if $u.d = \delta(s,u)$, then $av.d = \delta(s,v)$
 2 ther relaxing
Proof by induction
 s induction (b)
B220 case: $|s| = 1$
Source vertex $s \in S$ algo real
 $s.d=0$ $\delta(s,s)=0$
(f) $v.d = \delta(s,v)$ for every $v \in S$ up to $|s|=k$
Next, we add $k \le 1$ the vertex! (1) is $k \le 1$
about to add u to S
 $u.d$ shall averally be fine

