
CS3000: Algorithms & Data — Summer 2023 — Laney Strange

Homework 5 - Long
Due Tuesday June 13 @ 9pm Gradescope

Name:
Collaborators:

• Put your name on the first page. If you are using the LATEX template we provided, then you
can make sure it appears by filling in the yourname command.

• This assignment is due Tuesday June 13 @ 9pm Gradescope. You may submit up to 48 hours
late for no penalty, but expect a delay in grading.

• You will have an opportunity to resubmit one short homework and one long homework for
new grades, at the end of the semester.

• Solutions must be typeset, preferably in LATEX. If you need to draw any diagrams, you may
draw them by hand as long as they are embedded in the PDF. I recommend using the source
file for this assignment to get started.

• I encourage you to work with your classmates on the homework problems. If you do collaborate,
you must write all solutions by yourself, in your own words. Do not submit anything you cannot
explain. Please list all your collaborators in your solution for each problem by filling in the
yourcollaborators command.

• Finding solutions to homework problems on the web, or by asking students not enrolled in
the class, is strictly forbidden.

1

https://www.gradescope.com/courses/519665
https://www.gradescope.com/courses/519665


Problem 1. BFS and Bipartiteness (2+4 = 6 points)

An unweighted, undirected graph can be labelled bipartite if its vertices can be divided into two
independent sets, U and V , such that every edge (u,v) connects a vertex from U to V .

(a) Draw an example of a bipartite graph with at least 3 vertices in U and at least three vertices
in V .

Solution:

(b) Describe an algorithm that determines whether a graph is bipartite. (You don’t need formal
pseudocode here; a clear description of the algorithm suffices.) (Hint: Try painting the vertices
different colors like we’ve done in some graph algorithms.)

Solution:

2



Problem 2. Minimum Spanning Tree (4 points)

Give a counterexample, along with a clear explanation, to show that the following theorem is False:
Let G = (V ,E) be a connected, weighted, undirected graph. Let A be a subset of E that is included in
some minimum spanning tree for G, let (S,V −S) be any cut of G such that no edge in A crosses the
cut. Finally, let (u,v) be a safe edge for A crossing (S,V − S). Then (u,v) is a light edge for the cut.

Solution:

3



Problem 3. SSLP (2+4+2 = 8 points)

For this problem, we’ll modify Dijktra’s to compute the longest paths from a source vertex s to all
other vertices in a weighted, directed, acyclic graph. (Note that this is a hard problem for a general
graph. But doable for a DAG!)

(a) For the graph above, give a valid topological sort of the vertices.

Solution:

(b) Give pseudocode for an algorithm to compute the longest paths on a DAG like the one above.
Your algorithm should take a graph G represented in an adjacency list, a source vertex s, and
a weight function w, and you can assume that the vertices are topologically sorted. (Hint: You
can call/modify any helper functions we’ve seen in class.)

Solution:

(c) Give the final v.d and v.π values your algorithm would generate for the graph above.

vertex S A B C E
v.d
v.π

Solution:

4



Problem 4. APSP (4+2+2 = 8 points)

This problem is concerned with the graph below.

Recall that the recursive formula for the distances computed by the Floyd-Warshall APSP algorithm
defines an entry (i, j) in the kth D-matrix as follows:

d
(k)
ij = wij if k = 0 and

min(d(k−1)ij ,d
(k−1)
ik + d

(k−1)
kj ) otherwise.

When k = 0, we also need to consider when there is no edge from i to j. So we also have d
(0)
ij = 0 if

i == j and∞ if i , j but there is no edge from i to j.

(a) Fill in the first two D matrices, D(0) and D(1) following the recursive formula above.

D(0)

vertex 1 2 3 4 5
1
2
3
4
5

D(1)

vertex 1 2 3 4 5
1
2
3
4
5

Solution:

5



(b) We’re now interested in Π, the predecessor matrix that would help us construct a shortest
path between any two vertices. We define a value π

(k)
ij in the predecessor matrix Π(k) as π(k)

ij =
predecessor of vertex j on a shortest path from vertex i.

Give a formula for π(0)
ij , the entry for i, j in the initialization matrix.

Solution:

(c) Give a recursive formula for entry (i, j) in the kth Π matrix. You can assume all relevant D
matrices exist and you can refer back to them.

Solution:

6


