CS3000: Algorithms & Data — Summer 2023 — Laney Strange

Homework 5 - Long Due Tuesday June 13 @ 9pm Gradescope

Name: Collaborators:

- Put your name on the first page. If you are using the LATEX template we provided, then you can make sure it appears by filling in the yourname command.
- This assignment is due Tuesday June 13 @ 9pm Gradescope. You may submit up to 48 hours late for no penalty, but expect a delay in grading.
- You will have an opportunity to resubmit one short homework and one long homework for new grades, at the end of the semester.
- Solutions must be typeset, preferably in LATEX. If you need to draw any diagrams, you may draw them by hand as long as they are embedded in the PDF. I recommend using the source file for this assignment to get started.
- I encourage you to work with your classmates on the homework problems. *If you do collaborate, you must write all solutions by yourself, in your own words.* Do not submit anything you cannot explain. Please list all your collaborators in your solution for each problem by filling in the yourcollaborators command.
- Finding solutions to homework problems on the web, or by asking students not enrolled in the class, is strictly forbidden.

Problem 1. *BFS and Bipartiteness* (2 + 4 = 6 *points*)

An unweighted, undirected graph can be labelled *bipartite* if its vertices can be divided into two independent sets, U and V, such that every edge (u, v) connects a vertex from U to V.

(a) Draw an example of a bipartite graph with at least 3 vertices in *U* and at least three vertices in *V*.

Solution:

(b) Describe an algorithm that determines whether a graph is bipartite. (You don't need formal pseudocode here; a clear description of the algorithm suffices.) (*Hint:* Try painting the vertices different colors like we've done in some graph algorithms.)

Problem 2. Minimum Spanning Tree (4 points)

Give a counterexample, along with a clear explanation, to show that the following theorem is False: Let G = (V, E) be a connected, weighted, undirected graph. Let A be a subset of E that is included in some minimum spanning tree for G, let (S, V - S) be any cut of G such that no edge in A crosses the cut. Finally, let (u, v) be a safe edge for A crossing (S, V - S). Then (u, v) is a light edge for the cut.

Problem 3. *SSLP* (2 + 4 + 2 = 8 *points*)

For this problem, we'll modify Dijktra's to compute the **longest** paths from a source vertex *s* to all other vertices in a weighted, directed, acyclic graph. (Note that this is a hard problem for a general graph. But doable for a DAG!)

(a) For the graph above, give a valid topological sort of the vertices.

Solution:

(b) Give pseudocode for an algorithm to compute the longest paths on a DAG like the one above. Your algorithm should take a graph *G* represented in an adjacency list, a source vertex *s*, and a weight function *w*, and you can assume that the vertices are topologically sorted. (*Hint:* You can call/modify any helper functions we've seen in class.)

Solution:

(c) Give the final *v*.*d* and *v*. π values your algorithm would generate for the graph above.

vertex	S	Α	В	С	Ε
v.d					
$v.\pi$					

Problem 4. *APSP* (4 + 2 + 2 = 8 *points*)

This problem is concerned with the graph below.

Recall that the recursive formula for the distances computed by the Floyd-Warshall APSP algorithm defines an entry (i, j) in the *k*th *D*-matrix as follows:

 $d_{ij}^{(k)} = w_{ij}$ if k = 0 and min $(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)})$ otherwise.

When k = 0, we also need to consider when there is no edge from *i* to *j*. So we also have $d_{ij}^{(0)} = 0$ if i = j and ∞ if $i \neq j$ but there is no edge from *i* to *j*.

(a) Fill in the first two *D* matrices, $D^{(0)}$ and $D^{(1)}$ following the recursive formula above.

$D^{(0)}$					
vertex	1	2	3	4	5
1					
2					
3					
4					
5					
$D^{(1)}$					
D ⁽¹⁾ vertex	1	2	3	4	5
$\frac{D^{(1)}}{\text{vertex}}$	1	2	3	4	5
$\frac{D^{(1)}}{\text{vertex}}$ $\frac{1}{2}$	1	2	3	4	5
$ \frac{D^{(1)}}{vertex} \\ \frac{1}{2} \\ 3 $	1	2	3	4	5
$ \begin{array}{r} D^{(1)} \\ \hline 1 \\ 2 \\ 3 \\ 4 \end{array} $	1	2	3	4	5
$ \frac{D^{(1)}}{vertex} 1 2 3 4 5 $	1	2	3	4	5

(b) We're now interested in Π , the predecessor matrix that would help us construct a shortest path between any two vertices. We define a value $\pi_{ij}^{(k)}$ in the predecessor matrix $\Pi^{(k)}$ as $\pi_{ij}^{(k)}$ = predecessor of vertex *j* on a shortest path from vertex *i*.

Give a formula for $\pi_{ij}^{(0)}$, the entry for *i*, *j* in the initialization matrix.

Solution:

(c) Give a recursive formula for entry (i, j) in the *k*th Π matrix. You can assume all relevant *D* matrices exist and you can refer back to them.