CS3000: Algorithms & Data — Summer 2023 — Laney Strange

Homework 4 - Long
Due Tuesday June 6 @ 9pm Gradescope

Name:
Collaborators:

¢ Put your name on the first page. If you are using the IATEX template we provided, then you
can make sure it appears by filling in the yourname command.

¢ This assignment is due Tuesday June 6 @ 9pm Gradescope. You may submit up to 48 hours
late for no penalty, but expect a delay in grading.

* You will have an opportunity to resubmit one short homework and one long homework for
new grades, at the end of the semester.

¢ Solutions must be typeset, preferably in IZTEX. If you need to draw any diagrams, you may
draw them by hand as long as they are embedded in the PDF. I recommend using the source
file for this assignment to get started.

¢ [encourage you to work with your classmates on the homework problems. If you do collaborate,
you must write all solutions by yourself, in your own words. Do not submit anything you cannot
explain. Please list all your collaborators in your solution for each problem by filling in the
yourcollaborators command.

¢ Finding solutions to homework problems on the web, or by asking students not enrolled in
the class, is strictly forbidden.

https://www.gradescope.com/courses/519665
https://www.gradescope.com/courses/519665

Problem 1. Heapsort (4 + 2 = 6 points)

(a) Heapsort on a Min-Heap requires a HEAPIFY function, like would have happened in Part C
of Recitation 3. Heapify takes two arguments: the array representing the min-heap, A, and
the position of the current root, i. Heapify’s job is to bubble-down the element currently in
the root to its correct position while maintaining the heap properties (everything below a
node is smaller, and a heap is a complete binary tree).

Recall that our array A has a length attribute but also a heapsize attribute. Give pseudocode
for HEAPIFY. (Hint: A recursive algorithm is the simplest to implement!)

Solution:
(b) What is the run-time of your Heapify implementation?

Solution:

Problem 2. Amortized Analysis (1+1+1+1+ 2 = 6 points)

Let’s say we build a binary counter. We store a bunch of bits in an array A, where each A[i] is either
0 or 1. We start out with all the bits set to zero, and then start counting up. Every time we flip a bit,
it costs 1.

Alm] Alm-1] A[3] A[2] A[1] Cost
0 0 o o0 o0 -
0 0 o o0 1 1
0 0 o 1 o0 2
0 0 o 1 1 1
0 0 1 0 0 3
0 0 1 0 1 1

(a) In a traditional worst-case analysis, what is the bound on how many bits flip for a single
increment operation? The highest number we increment to is 7.

Solution:

(b) In a traditional worst-case analysis, if we want to perform all the increments from 0 up to #,
what is the bound on the overall run-time?

Solution:

(c) Let’s switch to an amortized approach, using aggregate analysis, by focusing on specific
individual bits. We know that the bit in A[1] will be toggled with every increment. The bit in
A[2] will be toggled after every how many increments?

Solution:
(d) The bit in A[3] will be toggled after every how many increments?
Solution:

(e) Give an expression for the total number of toggles over all the bits and state its bound. Is it
an improvement over the original?

Solution:

Problem 3. Amortized Analysis 2 (4 points)

Suppose we perform a sequence of n operations on a data structure in which the ith operation costs
i if i is a perfect square, and 1 otherwise. Use aggregate analysis to determine the amortized cost
per operation.

Solution:

Problem 4. BFS (2+ 4+ 4+ 2 =12 points)

(a) How would you represent the graph above using an adjacency matrix? (We’ve started the

table for you.
vertex | A|B|C|D|E|F|G
A [ofofo|1|1]0]0O
B
C
D
E
F
G
Solution:

n pseudocode, we use G.A|v||u | to Index into the adjacency matrix. For the example above,
(b) In pseudocod G.A[v][u] to index into the adj] y ix. For th ple ab
give a short pseudocode snippet that would print out all of E’s neighbors.

Solution:

(c) You can find the Breadth-First Search pseudocode from class at
https:/ /course.ccs.neu.edu/cs3000/resources/BFS_Pseudocode_.pdf. The original version
assumes that the graph is represented with an adjacency list. Copy the code below, and
modify it to work with an adjacency matrix instead.

Solution:
(d) What is the run-time of BFS if done this way?

Solution:

https://course.ccs.neu.edu/cs3000/resources/BFS_Pseudocode_.pdf

