
CS3000: Algorithms & Data — Summer ’25 — Laney Strange

Longest Common Subsequence

For a given sequence S, we can say that valid subsequence is just S with 0 or more elements
removed. If S =< N,O,R, T,H,E,A, S, T,E,R,N >, then valid subsequences include < N,T,H >
,< T,H,E,E >,< O,R, T,H,E,A, S, T >, and < O,E, S,E >. A common subsequence of two
sequences X and Y is a subsequence of X and a subsequence of Y .

The Longest Common Subsequence (LCS) problem is an optimization problem. Given two sequences
X and Y , our goal is to find a commmon subsequence of both X and Y , maxmimizing its length.
LCS is a good fit for dynamic programming, because:

• It exhibits optimal substructure, because an LCS of two sequences contains within it an LCS
of prefixes of the two sequences.

• A recursive solution would work, but re-solves smaller subproblems.

Below is pseudocode for solving the LCS problem with bottom-up dynamic programming. We’ll go
over them together in class.

The function LCS-Length generates two tables, b and c, which build a bottom-up DP solution for
the LCS problem. The input to the function is our two sequences X and Y , and their respective
lengths, m and n.

LCS-Length(X,Y,m, n)

1 let b[1 : m, 1 : n] and c[0 : m, 0 : n] be new tables
2 for i = 1 to m
3 c[i, 0] = 0
4 for j = 0 to n
5 c[0, j] = 0
6 for i = 1 to m
7 for j = 1 to n
8 if xi == yj
9 c[i, j] = c[i− 1, j − 1] + 1

10 b[i, j] = ”↖ ”
11 elseif c[i− 1, j] ≥ c[i, j − 1]
12 c[i, j] = c[i− 1, j]
13 b[i, j] = ” ↑ ”
14 else
15 c[i, j] = c[i, j − 1]
16 b[i, j] = ”← ”
17 return c and b

The c and b tables give us solutions to the smaller subproblems, but to reconstruct the actual LCS,
we need a helper function:
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Print-LCS(b,X, i, j)

1 if i == 0 or j == 0
2 return
3 if b[i, j] == ”↖ ”
4 Print-LCS(b,X, i− 1, j − 1)
5 print xi
6 elseif b[i, j] == ” ↑ ”
7 Print-LCS(b,X, i− 1, j)
8 else
9 Print-LCS(b,X, i, j − 1)
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LCS Tables

Using the code above, we make a c table, which stores the lengths of all the LCS subproblems. We
also make a b table, which stores left, up, and ”northwest” arrows so that we can reconstruct the
value of the LCS.

Here’s what the c and b tables would look like if we have X =< A,B,C,D > and Y =<
A,E,B,D,H > .

c table

yj A E B D H

xi 0 0 0 0 0 0
A 0 1 1 1 1 1
B 0 1 1 2 2 2
C 0 1 1 2 2 2
D 0 1 1 2 3 3

Here are a few things we can see from reading the c table:

• The length of the LCS of AEBDH, ABCD is 3.

• The length of the LCS of A, A is 1.

• The length of the LCS of A, AEBDH is 1.

• The length of the LCS of ABC,AEB is 2.

b table

A E B D H

A ↖ ← ← ← ←
B ↑ ↑ ↖ ← ←
C ↑ ↑ ↑ ↑ ↑
D ↑ ↑ ↑ ↖ ←

Here are a few things we can see from reading the b table:

• D is included in the LCS (because we see a northwest arrow where both X and Y have element
D)

• B is included in the LCS (because we see a northwest arrow where both X and Y have element
B)

• A is included in the LCS (because we see a northwest arrow where both X and Y have element
A)
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We typeset the two LCS pseudocode procedures with the following LATEX:

\begin{codebox}

\Procname{$\proc{LCS-Length}(X, Y, m, n)$}

\li let $b[1:m, 1:n]$ and $c[0:m, 0:n]$ be new tables

\li \For $i \gets 1 \To m$

\Do

\li $c[i, 0] = 0$

\End

\li \For $j \gets 0 \To n$

\Do

\li $c[0, j] \gets 0$

\End

\li \For $i \gets 1 \To m$

\Do

\li \For $j \gets 1 \To n$

\Do

\li \If $x_i == y_j$

\Do

\li $c[i, j] = c[i-1, j-1] + 1$

\li $b[i, j] = "\nwarrow"$

\li \ElseIf $c[i-1, j] \ge c[i, j-1]$

\Do

\li $c[i, j] = c[i-1, j]$

\li $b[i, j] = "\uparrow"$

\li \Else

\li $c[i, j] = c[i, j-1]$

\li $b[i, j] = "\leftarrow"$

\End

\End

\End

\li \Return $c$ and $b$

\end{codebox}

\begin{codebox}

\Procname{$\proc{Print-LCS}(b, X, i, j)$}

\li \If $i == 0$ or $j == 0$

\Do

\li \Return

\End

\li \If $b[i, j] == "\nwarrow"$

\Do

\li $\proc{Print-LCS}(b, X, i-1, j-1)$

\li print $x_i$

\li \ElseIf $b[i, j] == "\uparrow"$

\Do

\li $\proc{Print-LCS}(b, X, i-1, j)$

\li \Else
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\li $\proc{Print-LCS}(b, X, i, j-1)$

\End

\end{codebox}
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