CS3000: Algorithms & Data — Summer 2025 — Laney Strange

Recitation 2

Date: May 13th, 2025

Name:

- Recitation problems are for practice only. We'll go over the solutions during your scheduled recitation on Tuesday!
- We will provide .tex starter files for recitations, just as we do for homeworks. For most recitations, we encourage you to work out your solution in LATEX to practice with typesetting.
- Collaboration is strongly encouraged during recitation!

Problem 1. Proof by Induction - Summation

Prove that the sum of the first n positive integers is $\frac{(n)(n+1)}{2}$

Predicate S(n) states that $\sum_{i=1}^{n} i = \frac{(n)(n+1)}{2}$.

Logic Statement $\forall n \in \mathbb{Z}^+, S(n)$

In your solution below, make sure you include the base case, inductive hypothesis (assume true for S(k) for an arbitrary k), and inductive step (show $S(k) \implies S(k+1)$).

Solution:

Problem 2. *Proof by Induction - Correctness*

Solution:

Consider the pseudocode below for a recursive algorithm.

R	ECURSIVE(n)
1 2 3	<pre>if n == 1 return 1 return n + RECURSIVE(n-1)</pre>
	• What would this function return in the following examples?
	1. Recursive(1)
	Solution:
	2. Recursive(2) Solution:
	3. RECURSIVE(3) Solution:
	4. RECURSIVE(4) Solution:
	• Show by mathematical induction that, in general, RECURSIVE(n) returns $n+(n-1)+(n-2)++1$ for all positive integers n .