
CS3000: Algorithms & Data — Summer 2025 — Laney Strange

Homework 2
Due Thursday May 22 @ 9pm via Gradescope

Name:
Collaborators:

• Put your name on the first page. If you are using the LATEX template we provided, then you
can make sure it appears by filling in the yourname command.

• This assignment is due Thursday May 22 @ 9pm via Gradescope. You may submit up to 48
hours late for no penalty, but expect a delay in grading.

• Show ALL your work, even if the problem doesn’t specify it.

• You’ll have an opportunity to resubmit one homework at the end of the semester.

• Solutions must be typeset, preferably in LATEX. If you need to draw any diagrams, you may
draw them by hand as long as they are embedded in the PDF. I recommend using the source
file for this assignment to get started.

• Any solutions that include pseudocode must be in the CLRS style.

• I encourage you to work with your classmates on the homework problems. If you do collaborate,
you must write all solutions by yourself, in your own words. Do not submit anything you cannot
explain. Please list all your collaborators in your solution for each problem by filling in the
yourcollaborators command.

• If you get stuck on a homework problem, come by office hours or post on Piazza! We
recommend you spend about 30 minutes trying to figure out a problem, and then ask for help.
We’ll be happy to clarify material from class and algorithm concepts, but we will not give out
solutions or confirm your answers are correct.

• Finding solutions to homework problems online, or by speaking with students not enrolled
in the class, is strictly forbidden.

1

https://www.gradescope.com/courses/1020809
https://www.gradescope.com/courses/1020809


Problem 1. Mergesort (5 points)

We can analyze an algorithm’s space complexity in the same way we analyze its run-time. In the
case of mergesort, every time we call merge we create two new subarrays.

(a) Give a S(n) expression representing the amount of space created in Mergesort for an array of
length n. You can ignore all constant-space requirements and restrict your expression to just
the subarrays created.

Solution:

(b) Give a tight bound on the S(n) space complexity.

Solution:

2



Problem 2. Recurrence (10 points)

(a) Use the iteration method to give a closed form run-time for Heapsort’s MAX-HEAPIFY, given
by the recurrence T (n) = c1 + T (2n/3), where c1 is a constant, with base case T (1) = c2.

Solution:

(b) Give a bound on the recurrence.

Solution:

(c) Solve the same recurrence using the Master Method, and explain your steps.

Solution:

3



Problem 3. Mystery Algorithm Proof (10 points)

You encounter the following pseudocode:

MYSTERY(a,n)

1 if n == 1
2 return (1, a)
3 elseif n == 2
4 return (a,a · a)
5 elseif n is odd
6 (u,v) = MYSTERY(a,⌊n+12 ⌋)
7 return (u ·u,u · v)
8 elseif n is even
9 (u,v) = MYSTERY(a,⌊n+12 ⌋)

10 return (u · v,v · v)

(a) What would this function return in the following examples, assuming a is any integer?

• MYSTERY(a,1)?

Solution:

• MYSTERY(a,2)?

Solution:

• MYSTERY(a,3)?

Solution:

• MYSTERY(a,4)?

Solution:

(b) What does MYSTERY do in general, when given any integer a and an integer n > 0? Prove
your assertion by induction on n.

Solution:

4



Problem 4. Sum of Elements

(a) Give pseudocode for an algorithm that takes in an array of integers A, length n, and an integer
k. Return a boolean indicating whether there exist two positions i, j such that k = A[i] +A[j].
(Hint: Your solution can call any other procedure we’ve defined in lecture.)

Solution:

(b) Give a step-by-step explanation of how your algorithm would work on inputs A =< 3,15,5,16,7,1 >
,n = 6, k = 12 (it should return TRUE).

Solution:

(c) Give a tight bound on the run-time of your algorithm.

Solution:

5



Problem 5. Quicksort V2 (10 points)

The version of Quicksort we’ve covered assumes you choose one pivot q and place everything
smaller (or equal) to its left and everything larger to its right.

The Java version1 of Quicksort picks two pivots q1 and q2 where q1 ≤ q2. We partition the array
into three parts: (1) all the elements less than or equal to q1, (2) all the elements greater than q1 and
less than or equal to q2, and (3) all the elements greater than q2.

(a) Give the pseudocode for this new version of QUICKSORT – just the Quicksort procedure.
You can assume the correct PARTITION procedure exists and returns the locations of the two
pivots.

Solution:

(b) In the original version, we chose the pivot q = A[r] and partition returns its final location. In
this version, we’ll choose q1 = A[p],q2 = A[r]. What would the following array look like after
the first call to PARTITION? < 7,6,12,8,10 >

(c) What would PARTITION return after being called that first time?

Solution:

(d) Give a recurrence for the best-case run-time of this new version of Quicksort and state its
bound.

Solution:

1Implemented in JDK 7+ for sorting an array of primitives of length 47 or more.

6


