
CS3000: Algorithms & Data — Summer 2024 — Laney Strange

APP 1
Due: May 8th, 2025 @ 11:30am via Gradescope

Name: Sample Solution

• APPs will be assigned towards the end of roughly two lectures each week. You’ll put together
a solution to a short problem that we’ll all use in the following lecture. We’ll have time set
aside to do these in class, or you can work on your own.

• You may handwrite your solutions, or typeset them in LATEXor another system.

• APPs will be graded on completeness. They must be submitted by 11:30am (just before
lecture) on the due date. They will not be accepted late, but we drop 3 of them (out of 8 total).

• Collaboration is strongly encouraged for APPs!

Problem 1.

Below is the pseucode for INSERTIONSORT as we saw today in class.

INSERTIONSORT(A,n)

1 for i = 2 to n
2 key = A[i]
3 j = i − 1
4 while j > 0 and A[j] > key
5 A[j +1] = A[j]
6 j = j − 1
7 A[j +1] = key

• Give an example of an array that would result in the worst-case run-time for Insertion Sort.

Solution:

Anything in reverse-sorted order, such as < 9,8,7,6,5,4 >

• Give an example of an array that would result in the best-case run-time for Insertion Sort.

Solution:

Anything in sorted order, such as < 2,3,4,5,6,7 >

1

https://www.gradescope.com/courses/1020809


• In line 5, when we set A[j + 1] = A[j], what is keeping us from overwriting and therefore
losing the value at A[j +1]?

Solution:

Line 2 helps us with this, by saving the value in A[i] in key, and then line 3 sets j = i − 1, so
that j +1 = i.

• What is the best-case running time T (n) for Insertion Sort on an input of size n? Assume that
each execution of the kth line takes ck time where ck is a constant.

Solution:

T (n) = c1n+ c2(n− 1) + c3(n− 1) + c4(n− 1) + c7(n− 1)
= (c1 + c2 + c3 + c4 + c7)n− (c2 + c3 + c4 + c7)

• Give a tight bound on the best-case run-time.

Solution:

Θ(n).

2


