Part 1: Data Models
Felix Muzzy
$L D N L P \rightarrow$ modeling human lang. w/ math some times Ill add notes after lecture - normally in pink

Playing a lottery
10\% chance - given a puppy
100 people

$$
\begin{aligned}
& P_{\text {puppy }}=\frac{1}{10}=.1 \\
& P_{\text {no puppy }}=1-P_{\text {puppy }}=.9 \\
& .9 * .9 * .9 \ldots \ldots \quad P_{\text {no puppies }}=\left(P_{\text {nopuppy }}\right)^{100}=.000026 \\
& =.0026 \%
\end{aligned}
$$

Assumptions made?
How many people do we need in class $P_{\text {puppy in the class }} \geq 50 \%$?

- puppy distr. is inge pendent
- puppy distr. is uniform

Discovering a secret grading scheme

$$
\text { grade }=\text { home work + exams }
$$

student 1: $80 x+72 y=78$
2: $60 x+100 y=70$

$$
x+y=1
$$

what are the values of x and y ?

Assumptions made?

- Prof. Felix will the same grading scheme
- weights should sum to one

What else could we model?

ICA Question 1: based on these examples, what are two things that you'd like to model/learn how to model in this class?

1) your answer here

Math of Data Models

- Given that the real world is so complex... what are we aiming to give you in this course?
- A breadth of mathematical models to choose from
- The ability to be creative \& rigorous in making and evaluating assumptions
- A sense of which aspects of the application we're trying to model most accurately ... and how to do so

Part 2: Linearity \& functions

Functions

- In programming-land: A function is a conveniently packaged set of instructions (lines of code) that together accomplish some common operation.
- In math-land: A function is a formalis mapping of inputs to outputs numbers

Linearity

- A function is linear if (informal definition):
- scaling, applied before or after the function, has an equivalent effect
- addition, applied before or after the function, has an equivalent effect
$\alpha f(x)$

$$
f(x)+f(y)
$$

scalar $-\alpha$
$l_{D} \# \in \mathbb{R}$
L_{D} a real number
" (there is no slide 10)

Linearity

- A function is linear if:
- scaling, applied before or after the function, has an equivalent effect
choose α

$$
\begin{aligned}
f(\alpha x) & =\alpha f(x) \\
\hline f(x)=2 x & \alpha=3 \quad f(3+2)=f(6)=12 \\
& 3 * f(2)=3 * 4=12
\end{aligned}
$$

Linearity

- A function is linear if:
- addition, applied before or after the function, has an equivalent effect $x, y \in$ domain of f

$$
\begin{aligned}
& \text { addition: } \\
& f(1+4)=f(5)=10 \\
& f(1)+f(4)=2+8=10
\end{aligned}
$$

Linearity

- A function is linear if (formal definition, \& what we use in practice):
- $f(\alpha x+\beta y)=\alpha f(x)+\beta f(y)$
- for any $\alpha, \beta \in \mathbb{R}$ and $x, y \in \operatorname{domain}$ of f

$$
f(x)=2 x
$$

real numbers
domain is R^{R}

Linearity

- How to show a function is linear:
- $f(x)=10 \underline{x}$
- choose $\alpha, \beta \in \mathbb{R}$
- $(x, y \in \mathbb{R}$ for this equation)

$$
\begin{aligned}
f(\alpha x+\beta y) & =10(\alpha x+\beta y) \\
& =\alpha 10 x+\beta 10 y \\
& =\alpha f(x)+\beta f(y)
\end{aligned}
$$

yes!

Linearity

- How to show a function is not linear:
- $f(x)=x^{2}$
guess, get a counter example
- choose $\alpha, \beta \in \mathbb{R}$

$$
\alpha=\beta=1 \quad x=y=1
$$

- if proving non-linearity, we expect $f(\alpha x+\beta y) \neq \alpha f(x)+\beta f(y)$

$$
\begin{aligned}
f(\alpha x+\beta y) & =f(1 * 1+1 * 1) \\
& =f(2)^{2} 2^{2} \\
& =4
\end{aligned}
$$

Linearity

- Wait, why do we care?
- Remember: we're trying to build mathematical models of the world
- many real-world things are linear
- many are not linear, but can be re-cast as linear!

Linearity

- Wait, why do we care?
- we can find all solutions to these equalities (next)
- we can find values that are "closest" (lines of best fit)
- all outputs are defined by the systems behavior on any set of basis inputs

$$
\begin{array}{ll}
f(x)=2 x & f(3)=6 \\
f(1)=2 & f(17)=34 \\
f(2)=4 &
\end{array}
$$

- matrix multiplications!

LDGPOS ane
really good +
really fast

Solving systems of linear equations

- A linear system is a set of linear equalities
- Solutions to a linear system must satisfy all equalities
- $x+y=0$

$$
\begin{aligned}
& x=2, y=-2, z=30 \\
& 2+-2=0
\end{aligned}
$$

- $2 x-y+3 z=3$

Solving systems of linear equations

- A linear system is a set of linear equalities
- Solutions to a linear system must satisfy all equalities
- $x+y=0$
- $2 x-y+3 z=3$
- $x-2 y-z=3$

ICA Question 2: *pause* this video, then spend no more than 5 minutes attempting to solve this system of equations. Write down your work as you go!

Solving systems of linear equations

- To think about: how might you teach a computer to solve every possible linear system?

Gauss's Method

- Transform the system to a system with the same set of solutions (but whose solution is more obvious)
- $x+y=0$

$$
\begin{aligned}
& x=? \\
& y=?
\end{aligned}
$$

- $2 x-y+3 z=3$
- $x-2 y-z=3$
- swap two equations
- multiply both sides of an equation by a non-zero constant
- replace an equation with the sum of itself and the multiple of another

Gauss's Method

- Transform the system to a system with the same set of solutions (but whose solution is more obvious)
$r_{0} \cdot x+y=0$
$r_{1} \cdot 2 x-y+3 z=3$
$\mathbf{r}_{2} \cdot x-2 y-z=3$
- swap two rows
- scale a row
- sum two rows

$$
\begin{array}{ll}
\frac{\text { Swap }}{2 x-y+3 z=3} & \frac{\text { Scale }}{x+y=0} \\
x+y=0 & 4 x-2 y+6 z
\end{array}
$$

$$
x-2 y-z=3
$$

$$
r_{0}^{\prime}=r_{1}
$$

$$
r_{1}^{\prime}=r_{6}
$$

$$
\begin{aligned}
& r_{1}^{\prime}=2 r_{1} \\
& \frac{\text { sum }}{2 x-y-z=3} \\
& r_{0}^{\prime}=r_{0}+r_{2}
\end{aligned}
$$

Gauss's Method

$$
\begin{aligned}
& \begin{aligned}
\dot{x}+y & =0 \\
\dot{r}+1 & =0
\end{aligned} r_{1}^{\prime}=r_{1}-2 r_{0} \quad x+y=0 \\
& \begin{array}{l}
2 x-y+3 z=3 \longrightarrow \\
v_{2}+1+0=3
\end{array} \quad-3 y+3 z=3 \xrightarrow{r_{1}=-\frac{1}{3} r_{1}} y-z=-1 \\
& \dot{x} x-2 y-z=3 r_{2}^{\prime}=r_{z}-r_{0}-3 y-z=3 \quad-3 y-z=3 \\
& v 1+2-0=3 \\
& x+y=0 \quad r_{0}^{\prime}=r_{0}-r_{1} \quad x+z=1 \quad r_{0}^{\prime}=r_{0}-r_{2} x=1 \\
& \longrightarrow \quad y-z=-1 \rightarrow \quad y-z=-1 \quad \rightarrow \quad y=-1
\end{aligned}
$$

Gauss's Method - generalized

- Always keep the order of variables the same in equations
- $x+y=0$
- $2 x-y+3 z=3$
- $x-2 y-z=3$

Gauss's Method - generalized

- For $n=0$ to $n=$ number of equations -1 : (0 -indexing)
- scale the leading coefficient of eq' N to 1
- add (the correct multiple) of eq' $\mathrm{n} N$ to others
- $\underline{x}+y=0$
- $2 x-y+3 z=3$
- $x-2 y-z=3$
a 1 in one eqin for each variable, a 0 for that variable in the other eq'us

Matrices

- $x+y=0$
- $2 x-y+3 z=3$
- $x-2 y-z=3$
- As a matrix:

$$
\begin{aligned}
& \text { rix: } \\
& x \\
& x
\end{aligned} y \text { y } \quad z \quad \text { answev } 1 \text { "auqmented" matrix }
$$

- (this is what we are aiming for as we row-reduce our matrices)
- the leading coefficient is the first non-zero value in a row

$$
\left[\begin{array}{ccc|c}
1 & 0 & 0 & 7 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & -10
\end{array}\right] \quad\left[\begin{array}{ll|l}
1 & 0 & 2 \\
0 & 1 & \eta \\
0 & 0 & \eta
\end{array}\right]\left[\begin{array}{lll|l}
1 & 0 & \xi & \varepsilon \\
0 & 1 & \xi & \xi \\
0 & 0 & 0 & q
\end{array}\right]
$$

Reduced Row Echelon Form

- (this is what we are aiming for as we row-reduce our matrices)
- the leading coefficient is the first non-zero value in a row
- For a Reduced Row Echelon Form (RREF) matrix:
- Leading coefficient = 1 in row N in position N (or does not exist)
- Zeroes above \& below leading coefficient -> each leading coefficient is the only non-zero entry in its column

Part 4: Admin

where is the syllabus, how are you graded, and how will this course work, what is your schedule

- Homework (42\%)
- Quiz-tests (44\%)
- In-Class Activities (6\%)
- Graded on completion/effort (hard deadline of 11:59 the evening of lecture*)

- * except on asynchronous lecture days, when they'll be due before the next lecture (11:45am Thursday)
- Mini-projects (8\%)
- We're remote until Feb 5th
- Lectures are not recorded*
- We'll be meeting on Zoom at 11:45am on M/R -> see you all synchronously on Thursday! LDEST

Remote lectures: expectations

- Remote learning can be weird! We'll be doing our best to reduce weirdness.
- Here are my expectations of you all:
- Be in a location conducive to learning
- Set your zoom profile picture to a picture of yourself
- When we are in breakout rooms, turn on your cameras
- When we are in breakout rooms, each group will pick one person to screenshare
- Use the chat or "raise hand" features to ask me questions
- Wear a fun hat
- Pets are absolutely welcome
- Tell me about your music preferences every week

ICA questions: the fun bits

ICA Question 3: what is your current preferred *genre* of music?

ICA Question 4: do you have a current favorite artist?

ICA questions: wrap-up

ICA Question 5: after watching all the videos for lecture today, are there any questions/clarifications that you want me to cover during our next lecture?

Schedule

OH for TAs: start week of Jan 24 ch

Complete ICA 1 before class on Thursday -> find this on Gradescope!

We are remote until Feb 5th

Mon	Tue	Wed	Thu	Fri	Sat	Sun
January 17th MLK Day	Felix OH Calendly	Felix OH Calendly/drop-in	Lecture 2 - Vector Algebra			
January 24th Lecture 3 Matrices \& vector geometry HW 1 released	Felix OH Calendly	Felix OH Calendly/drop-in	Lecture 4 - ML, linear perceptron			

