conditional probabilities, Bayes' rule \square slope is pos

You are told that $\operatorname{cov}\left(x_{1}, x_{2}\right)=10$. What do you know about x_{1} and x_{2} ? Which of the following might be underlying distributions of the data?

Conditional Probabilities

- A conditional probability is a calculation of probabilities for dependent random variables.
- It translates to "if variable Y has value y_{j}, then what is the probability that variable X has value x_{i} ?"
- dependent. r.v. tables

ICA Question 1: Conditional Probabilities

Conditional Probability

- The calculation that we actually just did was:
. $P(A \mid B)=\frac{P(A, B)}{P(B)}=\frac{P(A \cap B)}{P(B)} \quad \frac{P(X=3, Y=7)}{P(Y=7)}$
- We cán use this to evaluate many things!
- What is the probability that school will close tomorrow based on if it's snowing today?
- What is the probability that the next word in a phrase will be "turtle" given that the previous word was "a"?

Conditional Probability

- What is the probability that school will close tomorrow based on if it's snowing today?
- What counts do we need for this?

$$
P(A \mid B)=\frac{P(A, B)}{P(B)}
$$

P(snou)
II

$$
P\left(\text { school closed t snow) } \frac{P(\text { school closed t suse) }}{P(\text { snow })}\right.
$$

$$
\begin{aligned}
& P(\text { snow })=\frac{\text { count (snow) }}{\text { count (days) }} \\
& P\left(\text { school closed t snow) }=\frac{\text { (ount (sch. cloned t) s now) }}{\text { count (days) }}\right.
\end{aligned}
$$

Conditional Probability

- What is the probability that the next word in a phrase will be "turtle" given that the previous word was "a"?
- What counts do we need for this?

$$
P(\text { turtle } \mid a)
$$

$\frac{P(a+u r t l e)}{P(a)}$

$$
P\left(\omega_{1}=\text { turtle } \mid \omega_{0}=a\right)
$$

- count of "a turtle"
- count of "a \qquad

ICA Question 2: Phrase Probabilities
Given the following data, calculate the probability that I will be late to school for each mode of transport.

Number of days: 50
Days that Felix was late: 20
Biked: 25
Rode the T: 20

$$
P(A \mid B)=\frac{P(A, B)}{P(B)}
$$

Walked: 5

$$
\begin{aligned}
& P(\text { late } \mid \text { Bike })=0.2=\frac{\frac{5}{50}}{8} \\
& P(\text { late } \mid \tau)=0.65 \\
& P(\text { late } \text { (walk })=0.4
\end{aligned}
$$

Late + bike: 5
Late $+1: 13$
Latest walk: 2

Conditional Probability

- Okay, but what if A and B are independent?
- What is the probability that I rolled a die and got a 6 given that I flipped a coin and got a tails?
- We can do the same calculation, but if $P(A \mid B)=P(A)=\frac{P(A, B)}{P(B)}$, then A and B are statistically independent

$$
\begin{aligned}
& P(A=6 \mid B=\text { heads }) \\
& \frac{P(A=6, B=\text { heads })}{P(B \text { heads })}=\frac{1 / 6 \cdot 1 / 2}{1 / 2}=1 / 6
\end{aligned}
$$

ICA Question 3: $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\mathrm{P}(\mathrm{B} \mid \mathrm{A})$?

ICA Question 4: $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=$ \qquad ?

Bayes' rule

- Bayes' rule denotes the relationship between $P(A \mid B)$ and $P(B \mid A)$

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

- ... but, why might this be useful?
\square what is prob. I have covid given test was negative?
\rightarrow Naive Bayes classifier (ML)
G all over in NLP

ICA Question 5: Bayes rule denominator
We want to know the probability that an email is not actually spam given that our detection software claims that it is spam.

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

What should the calculation be here? (Just in terms of variables)

$$
P(\text { not spare soft ware says spam) })
$$

$$
[(P \text { (says spaml span }) * P(\text { not spam })) / P(\text { says spam })
$$

. and specifically for the denominator?

$$
P(\text { says spam })=P(\text { says spam } / \text { spam }) P(\text { spam })+P(\text { says spanlnot } 1 \text { spa })
$$

Bayes' rule

- Bayes' rule denotes the relationship between $P(A \mid B)$ and $P(B \mid A)$
. $P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}$
- When calculating $P(B)$ for the denominator, it's often useful to calculate this as the sum of $\sum_{i} P\left(B \mid A_{i}\right) P\left(A_{i}\right)$
all values A can take

ICA Question 5: Bayes rule denominator (cont'd)
We want to know the probability that an email is not actually spam given that our detection software claims that it is spam. P (not spam I says spam)

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B) \rightarrow} \text { ho not have } P(\text { says span })
$$

We have observed that P (not spam) $=16 / 30$ and $P($ spam $)=14 / 30$. Our software has a false positive rate of 20%. It also claims that it will flag 99.5% of all spam email as spam.

$$
P(\text { says spam } 1 \text { not spar }) ~ b
$$

$$
\frac{.2+\frac{16}{30}}{\left(.2+\frac{16}{30}\right)+\left(.995 * \frac{14}{30}\right)}=0.187
$$

$$
P\left(\text { says spam }{ }^{\text {span }}\right)
$$

Naïve Bayes classifiers

- Bayes' rule denotes the relationship between $P(A \mid B)$ and $P(B \mid A)$
. $P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}$
- Say that we want to know the probability that an email is spam given that it contains the word "FREE".
- Instead of calculating P(spam | FREE), we'll calculate

1) P(FREE (span) P(span)

2) $\frac{P(\text { FREE loot spam }) P(\text { not span })}{P(F R E E E) \rightarrow P(d o t)}$

ICA Question 6: Mini Naïve Bayes

yes, so this evil $\frac{\downarrow}{>} \frac{1}{16} * \frac{16}{30}$

$$
\frac{10}{14} * \frac{14}{30}>\frac{1}{16} * \frac{16}{30}
$$

Naïve Bayes classifiers

- Naïve Bayes classifiers are a little more complicated than this because we like to be able to have more than one feature
- This is where "naïve" comes in...
- Gist is: calculate $\frac{P(\text { class } \mid \text { features }) P(\text { class })}{P(\text { features })}$ for each candidate class, then use the class with the biggest value as the overall label

Naïve Bayes classifiers

- Naïve Bayes classifiers are a little more complicated than this because we like to be able to have more than one feature
- This is where "naïve" comes in...
- Gist is: calculate $\frac{P(\text { class } \mid \text { features }) P(\text { class })}{P(\text { features })}$ for each candidate class, then use the class with the biggest value as the overall label
- Neat!

Conditional Probability \& natural language: wait, what?

- Say that I have the following sentences, what is P(turtle | \square dependent on?
- "a"
- "I like my friend the"
- "I found a"

Admin

- All sections of 2810 will be dropping your lowest 4 ICAs.
\rightarrow is in lanvas now
- Test 3 -> it's graded! Statistics look good at the moment. (Scores are higher than the first 2 tests)
- We're working on double checking for consistency right now
- Expect these grades before I see you next :)

Admin

- TRACE is available now!
- Please do fill these out. (in spite of survey fatigue)
- I read them!
- I use them to update and improve courses for the future.
- Specific feedback is helpful!
- Something you liked? What was it?
- Something that you'd like to see different? What was it?

Schedule

if you have tho 8 as, I'm happy answer them now (or mini-projects)

Turn in ICA 21 on Canvas (make sure that this is submitted by $2 p m!$) - passcode is "dragon"
HW 8: due on Sunday @ 11:59pm
Test 4: May 4th, 1 - 3pm, Snell Engineering 108
$\left.\begin{array}{|l|l|l|l|l|l|l|}\hline \text { Mon } & \text { Tue } & \text { Wed } & \text { Thu } & \text { Fri } & \text { Sat } & \text { Sun } \\ \hline \begin{array}{l}\text { April 11th } \\ \text { Lecture 21 -conditional } \\ \text { probabilities, bayes }\end{array} & \begin{array}{lllll}\text { Felix OH } \\ \text { Calendly }\end{array} & \text { Felix OH } \\ \text { Calendly }\end{array} \quad \begin{array}{l}\text { Felix OH Calendly } \\ \text { Lecture 22 -conditional } \\ \text { independence, bayes nets }\end{array}\right)$

More recommended resources on these topics

- Bayes theorem w/ Among Us characters: https://en.wikipedia.org/wiki/ Conditional probability\#/media/File:Bayes theorem assassin.svg
- (copied onto next slide)
- YouTube: 3Blue1Brown, Bayes theorem, the geometry of changing beliefs

https://en.wikipedia.org/wiki/Conditional_probability\#/media/File:Bayes_theorem_assassin.svg

