CS2810 DAY $6 \quad F \in D$
\rightarrow Matrix-Marrix Moctiplication
\rightarrow Linear comonations
\rightarrow Mareix Muctiphication al a Function (TanNsfonmarion)
\rightarrow Buicding Maraix function from Linearity
\rightarrow Scaning
\rightarrow Rotating
\rightarrow Composing Marnix functions $B A x=y$

Maraix-Mareix Muctipcication: Shape Ruce

$$
\vec{\Rightarrow}\left[\begin{array}{c}
\square \\
0 \\
0
\end{array}\right] \text { Was SAAPE } 3 \times \partial^{N} N \text { con }
$$

LET A Mas SMADE $n_{a} \times m_{a}$
B was sunpe $n_{b} \times m_{b}$
Marrix Nulcipcication oncy Defined when $m_{a}=n_{b}$ $A B_{1}$ WHEN DEFINED, HAS SAAPE $n_{a} \times M_{b}$

SuADE RULE EXANPLE
A Has SAADE 10×17
B Has Sunde 17×14
Give oorput suape of EAch operation

$$
\begin{array}{cc}
A B & B A \\
(10 \times 17)(17 \times 14) & (17 \times 14)(10 \times 17) \\
(10 \times 14) & \text { UNDEF INED }
\end{array}
$$

Transpose of a matrax swaps rows/cocs

$$
\left.\begin{array}{r}
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
-4 & 5 & 6
\end{array}\right] \\
4 \\
2 \times 3
\end{array} \quad \begin{array}{cc}
A^{7}=\left[\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right] \\
4 \times 2
\end{array} \right\rvert\, \begin{array}{cc}
x=\left[\begin{array}{l}
1 \\
0 \\
3
\end{array}\right] & x^{3}=\left[\begin{array}{ll}
1 & 2
\end{array}\right] \\
3 \times 1 & 1
\end{array}
$$

IC 1 Give SADE of EAch Matrix Product if ir Exists

$$
\begin{aligned}
& \operatorname{SHAPE}(A)=3 \times 3 \quad \operatorname{SanDE}(0)=3 \times 1 \\
& \operatorname{SAADE}(C)=3 \times 4 \quad \operatorname{SAADE}(0)=1 \times 4 \\
& \begin{array}{ccc}
A B & C A & A C \\
(3 \times 3)(3 \times 1) & (3 \times 4)(3 \times 3) & (3 \times 3)(3 \times 4) \\
(3 \times 1) & (1 \times 4)(4 \times 3)(3 \times 1) \\
& \text { NOT } & (3 \times 4) \\
& (1 \times 3)(3 \times 1)
\end{array}
\end{aligned}
$$

Matrix-Matrix Muctiplication: compotinc (Dot Phoouct)

$$
\begin{array}{ll}
\left(\begin{array}{cc}
3 \times \partial) & (\gamma \times \partial \\
1 & 0 \\
1 & 1 \\
2 & 7
\end{array}\right]\left[\begin{array}{cc}
3 & -1 \\
-2 & 4
\end{array}\right]=\left[\begin{array}{ll}
3 & 5 \\
3 & 3 \\
-8 & 5
\end{array}\right] \begin{array}{l}
1 \cdot 3+0 \cdot-1+1 \cdot 4=3 \\
2 \cdot 3+7 \cdot-2=-8
\end{array}
\end{array}
$$

EACM Elemevt in Proooct Matrix is Dot Proouct of Conessanonco Row (Left Marnix) AND Coc (lent Marex)

LinEAR Combination (weioutco Som)
could BC ant obsery, Most Manet
often Mar for os
A Linear combination of $X_{0}, X_{1}, X_{2}, \ldots$ is $\quad \alpha_{0} x_{0}+\alpha_{1} x_{1}+\alpha_{2} x_{2}+\ldots$ WHERE EACH α_{i} ARE SCALARS

Mateix-Vecior Muctiplication己 (n tuat onoen)

Mateix-Vecior Multiplication

$$
\begin{aligned}
& A x=\left[\begin{array}{ccc}
4 & 5 & 6 \\
7 & 8 & 9 \\
10 & 11 & 12
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{c}
1 \cdot 4+2 \cdot 5+3 \cdot 6 \\
1 \cdot 7+2 \cdot 8+3 \cdot 9 \\
1 \cdot 10+2 \cdot 11+3 \cdot 12
\end{array}\right] \\
& \begin{array}{l}
\text { Matrix vector multhication } \\
\text { is a linear combination } \\
\text { of the columns of the matrix }
\end{array} \\
& =1 \cdot\left[\begin{array}{c}
4 \\
7 \\
10
\end{array}\right]+2\left[\begin{array}{l}
5 \\
8 \\
11
\end{array}\right]+3\left[\begin{array}{l}
6 \\
9 \\
12
\end{array}\right]
\end{aligned}
$$

ICA 1.5 BuID चE Maraix A walch, wGEN Muctipcied $A S$ Ax, Always yeced The same vector x

$$
\begin{aligned}
& {\left[\begin{array}{l}
x_{0} \\
x_{1}
\end{array}\right]=A\left[\begin{array}{l}
x_{0} \\
x_{1}
\end{array}\right]=\left[\begin{array}{ll}
a_{0} & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{0} \\
x_{1}
\end{array}\right]} \\
& A=\left[\begin{array}{ll}
1 & 1 \\
a_{0} & 1 \\
1 & 1
\end{array}\right] \\
& {\left[\text { wnar is } A^{2}=x_{0}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+X_{1}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
A \\
1 \\
0 \\
0
\end{array}\right]\left[\begin{array}{l}
x_{0} \\
x_{1}
\end{array}\right]\right.}
\end{aligned}
$$

Verooe-Marant Muctioncation

$$
\begin{aligned}
& \text { tin that onoen }
\end{aligned}
$$

$$
\begin{aligned}
& x A 1=1 \cdot\left[\begin{array}{lll}
4 & 56
\end{array}\right] \\
& \text { vecion-Maranx Muctipuardy }+2 \cdot[789] \\
& \text { is A Linene combo rows of } A \quad+3 \cdot\left[\begin{array}{lll}
10 & 11 & 10
\end{array}\right] \\
& \text { of nows of } A
\end{aligned}
$$

Transpose Dentities ano hod they reciate Mataix-vecion to Vecion-Marnu Muctipucations

$$
\begin{array}{ll}
\left(A^{\top}\right)^{\top}=A & (x A)^{\top}=A^{\top} x^{\top} \\
(A B)^{\top}=B^{\top} A^{\top} & (A x)^{\top}=x^{\top} A^{\top}
\end{array}
$$

Matrix-veior and vector Marrix Mucriplications ARE A TnANSPOSE AwN from Eacl otaER

CONNENTION:

Prefer Matrix-Vector Mulciplication waere Possible (co vectors)
(AvoID VECTOR-MATRIX ω (ROW JECRORS)
ingeneral i is not A wars troe
That $\quad A B=B A$

Marrix Multipucation is
not commutarive

ICA 2 Simpury Eronesionds BEDW

$$
\left[\begin{array}{lll}
1 & 2 & 3 \times 1 \\
1 \\
3 \\
3
\end{array}\right]
$$

Mataix-Veron Muctrocicarion as a fonerion
$L \in T \quad A \in \mathbb{R}^{2 \times 2}$ consioen $f: \mathbb{R}^{2+1} \rightarrow \mathbb{K}^{2 \cdot 1}$

$$
f(x)=A x=b
$$

Given a 2d column vector x, find the matrix A which, when multiplied as Ax, yields an output which: - doubles the first dimension of x
-triples the second dimension of x
Multiply By

$$
\xrightarrow[A]{A}
$$

Codomain $\mathbb{R}^{2 \times 1}$

$$
\begin{gathered}
A x=b \\
(\partial x y)(\partial+1)(\partial x 1) \\
(\partial x 1)
\end{gathered}
$$

Bulling Transform 4
LET $a_{0}, a, b e$ columns of $A=\left[\begin{array}{cc}1 & 1 \\ a_{0} & a_{1} \\ 1 & 1\end{array}\right]$

$$
A=\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right]
$$

LST Want A with

$$
x=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad\left[\begin{array}{l}
0 \\
0
\end{array}\right]=A\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
a_{0} & a_{1} \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=10\left[\begin{array}{c}
1 \\
a_{0} \\
1
\end{array}\right]+0\left[\begin{array}{c}
1 \\
a_{1} \\
1
\end{array}\right]
$$

$$
x=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad\left[\begin{array}{l}
0 \\
3
\end{array}\right]=A[0]=\left[\begin{array}{cc}
1 & 1 \\
0 & a_{1} \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
i
\end{array}\right]=0 \cdot\left[\begin{array}{c}
1 \\
q_{0}
\end{array}\right]+1\left[\begin{array}{c}
1 \\
a_{1} \\
1
\end{array}\right]
$$

But you Just BuILT A From only two input vectors, How Do you know it work e for omens?

Maxnix Moctipuication (By A) is CmEar

$$
A(\alpha x+\beta y)=\alpha A x+\beta A y
$$

But you Just BuILT A from only two inPut VECTORS, How do YOD kNow it works for omer?

$$
\begin{aligned}
& x=\left[\begin{array}{c}
7 \\
-2
\end{array}\right] \text { Expect } A x=\left[\begin{array}{c}
14 \\
-6
\end{array}\right] \\
& \begin{aligned}
A\left[\begin{array}{l}
7 \\
7
\end{array}\right]=A\left(7 \cdot\left[\begin{array}{l}
1 \\
0
\end{array}\right]-2\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right) & =7 A\left[\begin{array}{l}
1 \\
0
\end{array}\right]-\partial A[0] \\
& =7[\partial]-2[0]
\end{aligned} \\
& =7\left[\begin{array}{l}
0 \\
0
\end{array}\right]-2\left[\begin{array}{l}
0 \\
3
\end{array}\right] \\
& =\left[\begin{array}{c}
14 \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
-6
\end{array}\right]=\left[\begin{array}{c}
14 \\
-6
\end{array}\right]
\end{aligned}
$$

$$
\left[\begin{array}{r}
14 \\
-6
\end{array}\right]=2\left[\begin{array}{r}
7 \\
-3
\end{array}\right]
$$

How to BuILD ANY LEAR function on vector x

WHERE $a_{0}=A\left[\begin{array}{l}1 \\ 0\end{array}\right]$
$a_{1}=A\left[\begin{array}{l}0 \\ 1\end{array}\right]$

Rotation Above origin is a Linear Transform

Rotation Matrices Rozate coonten cockwise by θ

$$
A=\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

Marnix Muctipucation is Associative

$$
(A B) C=A(B C)
$$

$$
\begin{array}{r}
{\left[\begin{array}{lll}
c_{0} & 0 & 0 \\
0 & c_{1} & 0 \\
0 & 0 & c_{0}
\end{array}\right]\left[\begin{array}{l}
x_{0} \\
x_{1} \\
x_{2}
\end{array}\right]=c_{0}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] x_{0}+\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] x_{1}} \\
+c_{0}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] x_{2}
\end{array}
$$

$$
\begin{aligned}
& A=c\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& B A x=B-x
\end{aligned}
$$

Composing fosctions

$$
A B x=A(B x)
$$

First APPCY ZTRANSFORM B to x
TuEN APPLY Transform A to x

ICA 3 find A smale Marnix A wricul WHEN Muctricieo By $x=\left[\begin{array}{l}x_{i} \\ x_{1}\end{array}\right]$ AS $A x$
(1) \rightarrow Rotares 20 vaton $\left[\begin{array}{l}x_{0} \\ x_{1}\end{array}\right]$ cucuwise Acoot oniond 90°
(D) \rightarrow Scaces x_{1} By -1
\rightarrow Rotares 20 vekror $\left[\begin{array}{l}x_{x_{1}} \\ x_{1}\end{array}\right]$ Loncuise Acoot onicos 90°

$$
\underset{\underset{[-1]}{\mid}\left[\begin{array}{l}
0 \\
{\left[x_{i}\right]}
\end{array}\right.}{ } \quad A=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

\rightarrow Scaces x_{i} by -1

$$
\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
x_{0} \\
x_{1}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right] x_{0}+\left[\begin{array}{c}
0 \\
0
\end{array}\right] x_{1} \quad B=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

$B A x$

