As you get settled...
now playing: The Postal Service "Such Great Heights

- Get out your notes
"The District Sleeps alone
- Get out a place to do today's ICA (6) tonight"
- Please remember to write your name, my name, the ICA \#, and the date!
- We'll start with a linear perceptron warm-up question!
- (then weill do lots of matrix math :D)

A:yay! B: good C: meh D: apprehensive E : not so good "
$f(\vec{x})=1$ if $\vec{x} \cdot \overrightarrow{\omega_{0}} \quad=0$ else 0
CS 2810: Mathematics of Data Models, Section 1 Spring 2022 - Felix Muzny

Matrix Math \& Manipulations
We learned that a linear perceptron is defined by a set of weights. Suppose that I gave you the following weights. What does the decision space of the perceptron look like?

$$
\vec{x}=\left[\begin{array}{l}
b \\
x_{0} \\
x_{1}
\end{array}\right]=\left[\begin{array}{l}
1 \\
x_{0} \\
x_{l}
\end{array}\right]
$$

$$
z=\left[\begin{array}{c}
1 \\
1 / 2 \\
0
\end{array}\right]=1-1=0-y
$$

$$
\begin{aligned}
& \vec{w}=\left[\begin{array}{c}
1 \\
-2 \\
0
\end{array}\right] \\
& \xrightarrow{\text { LDClass }} \\
& \left.x_{2}=-\frac{\omega_{0}}{\omega_{2}}-\frac{\omega_{1}}{\omega_{2}} x_{1} x=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \begin{array}{c}
\text { LDelass } 0
\end{array}\right]
\end{aligned}
$$

if we wanted to define our eq'n in terms of x_{1} instead of $x_{2} \ldots$

$$
\begin{array}{r}
1 w_{0}+w_{1} x_{1}+\omega_{2} x_{2}=0 \\
\omega_{1} x_{1}=-\omega_{2} x_{2}-\omega_{0} \\
x_{1}=\frac{-\omega_{2} x_{2}-\frac{\omega_{0}}{\omega_{1}}}{\omega_{1}}
\end{array}
$$

gives us an eq'n w/ a x-intercept

Matrix Multiplication

- matrix-matrix multiplication
today!
- Matrix multiplication as a function
- Building matrix functions from linearity
- scaling
- rotating
- Composing matrix functions $B A x=y$

Matrix Multiplication: shape rule

- We'll be working with two matrices today: A (for "Aardvark", aka "Arthur") and B (for "Brontosaurus", aka "Bronty", aka "Brontë")
- Arthur has shape (n, m)

Matrix Multiplication: shape rule

- Some shapes are compatible for matrix - matrix multiplication, and many are not.
- Key points:
- Inner dimensions must match
- Order matters
$A B$ is not the sane as $B A$

$$
2 * 3=3 * 2
$$

Matrix Multiplication: shape rule programming

cannot do
this

Matrix Multiplication: shape rule

ICA Question 1: for each of the following matrix multiplications (and dimensions), say
a) whether or not it is defined and
b) what the shape of the resulting matrix would be

Matrix Manipulations: Transposes

- The transpose of a matrix is the matrix made by "flipping" the rows to columns

$$
\begin{gathered}
A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
-4 & -5 & -6
\end{array}\right] \quad A^{T}=\left[\begin{array}{cc}
1 & -4 \\
2 & -5 \\
3 & -6
\end{array}\right] \\
m \times u
\end{gathered}
$$

- What is the result of $A A^{T}$?

$$
\begin{aligned}
& \text { is the result of } A A^{\prime} \text { ? } \\
& \text { LD if } A \text { is }(n \times m) \rightarrow a \quad n \times n
\end{aligned}
$$

- What is the result of $A^{T} A$?

$$
L_{0}(m \times n)(n \times m) \rightarrow m \times m \text { matrix }
$$

Matrix Multiplication: Computing

- Each element in the product matrix is the dot product of the corresponding row from the left matrix and column from the right matrix

$$
\begin{array}{ll}
A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
-4 & -5 & -6
\end{array}\right] & A^{T}=\left[\begin{array}{cc}
1 & -4 \\
2 & -5 \\
3 & -6
\end{array}\right] \\
A A^{T}=\left[\begin{array}{cc}
1 \cdot 1+2 \cdot 2+3 \cdot 3 & 1 \cdot-4+2 \cdot-5+3 \cdot-6 \\
-4 \cdot 1+-5 \cdot 2+-6 \cdot 3 & -4 \cdot-4+-5 \cdot 5+-6 \cdot 6
\end{array}\right]=\left[\begin{array}{cc}
14 & -32 \\
-32 & 77
\end{array}\right] \\
2 \times 2
\end{array}
$$

Linear Combinations (weighted sum)

- A linear combination of $x_{0}, x_{1}, x_{2} \ldots$ is $\alpha_{8} x_{0}+\alpha_{1} x_{1}+\alpha_{2} x_{2} \ldots$

$$
\left.\begin{array}{l}
A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
-4 & -5 & -6
\end{array}\right] \quad x=\left[\begin{array}{c}
2 \\
4 \\
2 \times 3
\end{array}\right] \\
3 \times 1
\end{array}\right]=\left[\begin{array}{c}
4 \\
16
\end{array}\right]
$$

Linear Combinations (matrix-vector)

- A linear combination of $x_{0}, x_{1}, x_{2} \ldots$ is $\alpha x_{0}+\alpha_{1} x_{1}+\alpha_{2} x_{2} \ldots$
- Matrix-vector multiplication $(A x)$ is a linear combination of the rows of A

$$
A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
-4 & -5 & -6
\end{array}\right] \quad x=\left[\begin{array}{c}
2 \\
4 \\
-2
\end{array}\right] \quad B=10 \times 3 \quad y=3 \times 1
$$

- What must be true about the dimensions of the vector that we are multiplying with our matrix?
\square same \# of rows as columns in matrix L_{0} in practicg \rightarrow take a transpose if it was switched (1×m) "instead of $(m \times 1)$

Linear Combinations (Vector-matrix)

- A linear combination of $x_{0}, x_{1}, x_{2} \ldots$ is $\alpha x_{0}+\alpha_{1} x_{1}+\alpha_{2} x_{2} \ldots$
- Vector-matrix multiplication $(x A)$ is a linear combination of the columns

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
-4 & -5 & -6
\end{array}\right] \quad x=\left[\begin{array}{ll}
2 & 4
\end{array}\right] \\
& X A=(1,3)
\end{aligned}
$$

- What must be true about the dimensions of the vector that we are multiplying with our matrix?

4 game $\#$ of columns as rows in matrix
A prefer matrix-vector over vector matrix A

Matrix Multiplication: matrix-vector

ICA Question 2: which matrix-vector multiplications are defined given the below matrices and vectors? Do those matrix-vector multiplications

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right] \quad B=\left[\begin{array}{cc}
-5 & -6 \\
0 & 1
\end{array}\right] \quad x=\left[\begin{array}{l}
2 \\
3
\end{array}\right] \quad y=\left[\begin{array}{l}
-2 \\
-3 \\
-4
\end{array}\right]
$$

$$
A_{y}=\underset{\text { matrix }}{\operatorname{ar1}} \quad B_{x}=\underset{\text { matrix }}{2 \times 1}
$$

please do show your work!

Another way to write matrix-vector multiplications

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right] y=\left[\begin{array}{l}
-2 \\
-3 \\
-4
\end{array}\right] \quad \text { A: Great } \quad \text { E: Bad! } \\
& A_{y}=\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right]\left[\begin{array}{l}
-2 \\
-3 \\
-4
\end{array}\right]=-2\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+-3\left[\begin{array}{l}
2 \\
2 \\
2
\end{array}\right]+-4\left[\begin{array}{l}
3 \\
3 \\
3
\end{array}\right] \\
& \left.C z=\left[\begin{array}{lll}
1 & 1 \\
c_{0} & c_{1} & \ldots c_{n} \\
1 & 1 & \mid
\end{array}\right]\left[\begin{array}{c}
v_{0} \\
v_{1} \\
\vdots \\
v_{n}
\end{array}\right]=V_{0}\left[c_{0}\right]+v_{1}\left[C_{1}\right]+\ldots+V_{n}\right]\left[C_{n}\right]
\end{aligned}
$$

Another way to write matrix-vector multiplications

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right] y=\left[\begin{array}{l}
-2 \\
-3 \\
-4
\end{array}\right] \\
& A_{y}=\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right]\left[\begin{array}{l}
-2 \\
-3 \\
-4
\end{array}\right]=\left[\begin{array}{l}
1 \cdot-2+2 \cdot-3+3 \cdot-4 \\
1 \cdot-2+2 \cdot-3+3 \cdot-4 \\
1 \cdot-2+2 \cdot-3+3 \cdot-4
\end{array}\right]=\left[\begin{array}{l}
-20 \\
-20 \\
-20
\end{array}\right]
\end{aligned}
$$

Break: until 12:50

HWZ \rightarrow released tomorrow \rightarrow Prof. Higger and I ane finalizing wording this afternoon II

Matrix-Vector multiplication as a function

- We can write any function as a mapping from one domain to another:
$\cdot f(x)=x+1 \quad f: \mathbb{R} \rightarrow \mathbb{R}$
- Now, say that we have $A \in \mathbb{R}^{2 x 2}$
- consider $f: \mathbb{R}^{2 x 1} \rightarrow \mathbb{R}^{2 x 1}>$ outputs input $\left[\begin{array}{l}x_{0} \\ x_{1}\end{array}\right]$

$$
\left[\begin{array}{l}
y_{0} \\
y_{1}
\end{array}\right]
$$

Matrix-Vector multiplication as a function

- Now, say that we have $A \in \mathbb{R}^{2 x 2}$
- consider $f: \mathbb{R}^{2 x 1} \rightarrow \mathbb{R}^{2 x 1}$

Building transforms

- consider $f: \mathbb{R}^{2 x 1} \rightarrow \mathbb{R}^{2 x 1}$
- double x_{0} magnitude
- triple x_{1} magnitude

domain

Building transforms

- Let a_{0}, a_{1} be column vectors of $A \rightarrow\left[\begin{array}{ll}1 & 0 \\ \cdot A=\left[\begin{array}{ll}1 & 1 \\ a_{0} & a_{1} \\ 1 & 1\end{array}\right] & A x=\left[\begin{array}{l}2 x_{0} \\ 3 x_{1}\end{array}\right]\end{array}\right]$
- Let:

$$
\begin{aligned}
& \text { - } x=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad A\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
2 \\
0
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
a_{0} & a_{1} \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=1\left[a_{0}\right]+0\left[a_{1}\right]=a_{0} \\
& -x=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad A\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
3
\end{array}\right]=\left[\begin{array}{ll}
a_{0} & a_{1}
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=0 a_{0}+1 a_{1}=a_{1}
\end{aligned}
$$

Matrix multiplication：it＇s linear！

－$f(\alpha x+\beta y)=\alpha f(x)+\beta f(y)$
－All matrix－matrix multiplications are linear
－$\underline{A}(\alpha x+\beta y)=\alpha \underline{A} x+\beta \underline{A} y$
－This is how we know that our transform matrix works even though we only built it on two examples！

$$
\begin{aligned}
& {\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{l}
-1 \\
-1
\end{array}\right]=\left[\begin{array}{l}
-2 \\
-3
\end{array}\right]} \\
& \text { 啊细 }
\end{aligned}
$$

Building transforms

- consider $f: \mathbb{R}^{2 x 1} \rightarrow \mathbb{R}^{2 x 1}$
- rotate counter clockwise by θ

domain

codomain

Building transforms

- consider $f: \mathbb{R}^{2 x 1} \rightarrow \mathbb{R}^{2 x 1}$
- rotate counter clockwise by

$$
\begin{aligned}
A\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] & =\left[\begin{array}{cc}
1 & 1 \\
a_{0} & a_{1} \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=1\left[a_{0}\right]+0\left[\begin{array}{l}
a_{1}
\end{array}\right]=a_{0} \\
A\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
-1 \\
0
\end{array}\right] & =\left[\begin{array}{ll}
1 & 1 \\
a_{1} & a_{1} \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=0\left[\begin{array}{l}
a_{0}
\end{array}\right]+1\left[a_{1}\right]=a_{1} \\
A & =\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
\end{aligned}
$$

Building transforms

- consider $f: \mathbb{R}^{2 x 1} \rightarrow \mathbb{R}^{2 x 1}$
- rotate counter clockwise by , now expressed generally speaking

Some final matrix multiplication notes

- $A A x=A^{2} x$
- $A B x=A(B x)$ (first apply B, then apply A)

Schedule

Turn in ICA 6 on Gradescope HW 2 will be released tomorrow! On Monday we'll be in person in Snell Engineering 108. I'll send an announcement with all the details (we'll dial you in if you are sick).			Felix's scheduled office hours will now be entirely on Calendly (currently T, R). Sign up with whatever quandaries you have at least an hour in advance! They'll also appear on khouryofficehours from time to time.			
Mon	Tue	Wed	Thu	Fri	Sat	Sun
January 31st Lecture 5 - Linear Perceptron	Felix OH Calendly	HW 1 due @ 11:59pm	Lecture 6 - matrix multiplication, transforms Felix OH Calendly	HW 2 released		
February 7th Lecture 7 - Vector spaces in Snell Engineering 108	Felix OH Calendly		Lecture 8 - line of best fit Felix OH Calendly			HW 2 due @ 11:59pm

