CS 2810 Day 23 April 15

Admin:
10 mins for TRACE
Quiz3_02: problem 2.iv \& 3.iv
Bayes Rule

- binary problems
- parametric likelihoods
- bayes rule \& independence

TRACE
TRACE feedback helps me be a better teacher for you all.
TRACE feedback helps NU identify strong / weak teachers.
Please take a few minutes to give feedback about what worked and what didn't.

Conditional Pros
$($ intuit lion: "zoon into content
SEE

Conditional Pros (useful algebraic Manipulation)

Prob a Happens GivEn Condition B

Prob A, B Happen together

Prob B HAPPENS

$$
P(A \mid B)=\frac{P(A B)}{P(B)}
$$

$$
P(A \mid B) P(B)=P(A B)
$$

Takeaway: Multiplying a conditional probability by the probability of condition yields a "full joint" probability of all variables happening together. (we'll see it works for more than just two vars A, B too!)

Bates Rule (Gcoartiso conorioual Probabury)
SEe parlous "Takeaway"

$$
\begin{aligned}
& P(A \mid B) P(B)=P(A B) \stackrel{t}{=} P(B \mid A) P(A) \\
& \Rightarrow \quad P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
\end{aligned}
$$

Notice: this formula "swaps" the order of the conditioning: $P(A \mid B)$ on left $P(B \mid A)$ on right Its typical in a Bayes question to be given variables in one order while question asks for other.

Marginalizing (Remember this?) $\begin{aligned} & B=1 \text { shane is blue } \\ & C=1 \text { Share is erect }\end{aligned}$

(4)
(xs)

$$
\begin{aligned}
P(B=1) & =P(B=1, C=0)+P(B=1, C=1) \\
& =1 / 5
\end{aligned}
$$

Remember: To compute $P(B)$ we can sum $P(B, A)$ for all outcomes in sample space of A

$$
P(B=b)=\sum_{a} P(B=b A=a)
$$

Maroinacizino (writ A conominar)

BAHES RUCE Ex $\begin{aligned} & \text { Civen flu occurs in .04 of population, what is the } \\ & \text { promatilityourtas }\end{aligned}$

In Class Assignment 1

$$
P(B=1)=.02
$$

A blind spot monitor produces a warning light (L=1) when it estimates that a ear is in one's blind spot ($B=1$). Given that the light is off, whats the probability that a car is one's blind spot? (Assume that a car is in your blindspot 02 of the time while driving.)

$$
\begin{aligned}
P(B & =1 \mid L=0)=\frac{P(L=0 \mid B=1) P(B=1)}{P(L=0)} \\
& =\frac{.1:(.02)}{(.99)(.98)+(.1)(.00)} \\
& =0.002
\end{aligned}
$$

$$
P(B=1)=.02
$$

A blind spot monitor produces a warning light (L=1) when it estimates that a ear isinone's blind spot ($B=1$). Given that the light is off, whats the probability that a car is one's blind spot? (Assume that a car is in your blindspot 02 of the time while driving.)

Making Bayes more useful (non-binary A, B variables):
Bayes is applicable in problems where each variable has more than 2 states too! (see quick example on next page)

Bayes Practice $P(s \mid 0)$

$$
P(D=1)=.09
$$

D-0 No GoLs Deposit
$D=1$ GiLD Derosit
$S=0$ No coco in spream $S=1$ Lirice Gocd in stnenm $S=2$ Muan Goid in STnEAM

WHAT is PROTS of Deposir Given Nual Goud in stream?

$$
\begin{aligned}
& P(D=1 \mid s=2)=\frac{P(s=2 \mid D=1) P(D-1)}{P(s=2)} \\
& =\frac{P(s-2 \mid D=1) P(D=1)}{\frac{\sum}{\partial} P(s=2 D-d)} \\
& =
\end{aligned}
$$

Making Bayes More Useful (parametric likelihoods):
Let's build models / problems where the conditional $P(B \mid A)$ is parametric -binomial distribution - poisson

If a stream is near a gold deposit, one typically finds a gold nugget after an hour of sifting.

If a stream is not near a gold deposit, one typically findsh gold nuggest after a full day of sifting work (10 hours).

$$
P(x \mid 0=0)=\operatorname{Por}(\lambda=7)
$$

1% of streams are near gold deposits. $P(D=1)=.01$
If we find 3 nuggets after 7 hours of sifting a particular stream, whats the probability that this stream is near a gold deposit?

$$
P(D=1 \mid x=3)=?
$$

$$
\begin{aligned}
& X=\# \begin{array}{l}
\text { NUGOETS FOUND AFTER } 7 \text { HOURS OF } \\
\text { SIFTING } \\
=1 \text { IF DEPOSIT NEARBY } \\
0 \text { OTHERWISE }
\end{array} .
\end{aligned}
$$

If a stream is near a gold deposit, one typically finds a gold nugget after an hour of sifting.

$$
P(\times \mid D=1)=P \text { arson }(\lambda=7)
$$

If a stream is not near a gold deposit, one typically findsh gold nuggest after a full day of sifting work (10 hours).

$$
P(x \mid 0=0)=\operatorname{Pors}(\lambda=7)
$$

1% of streams are near gold deposits. $P(D=1)=.01$
If we find 3 nuggets after 7 hours of sifting a particular stream, whats the probability that this stream is near a gold deposit?

$$
P(D=1 \mid x=3)=\frac{P(x=3 \mid D=1) P(D=1)}{P(x-3)}=\frac{\operatorname{PMF}(x=3 \lambda=7)(01)}{\operatorname{Pmf}(x=3=-7)(a 99)+\operatorname{Pmf}(x+3-7)(01)}
$$

If a stream is near a gold deposit, one typically finds a gold nugget after an hour of sifting.
If a stream is not near a gold deposit, one typically finds gold nuggest $(\lambda=7)$ after a full day of sifting work (10 hours).

$$
P(x \mid 0=0)=\operatorname{Por}(\lambda=7)
$$

$$
P(D=1)=.01
$$

1\% of streams are near gold deposits. $P(D=1)=.01$
If we find 3 nuggets after 7 hours of sifting a particular stream, whats the probability that this stream is near a gold deposit?

$$
\begin{aligned}
P(x=3) & =P(x=3 \quad D=0)+P(x=3 D=1) \\
& =P(x=3 \mid 0=0) P(D=0)+P(x=3 \mid D=1) P(D=1) \\
& =\operatorname{PMF}(x=3 \quad \lambda=.7)(.99)+\operatorname{PMF}(x=3 \lambda=7)(.01)
\end{aligned}
$$

If a stream is near a gold deposit, one typically finds a gold nugget after an hour of sifting.

If a stream is not near a gold deposit, one typically finds a gold nuggest after a full day of sifting work (10 hours).

1\% of streams are near gold deposits.
Likeliabos

If we find 3 nuggets after 7 hours of sifting a particular stream, whats the probability that this stream is near a gold deposit?

Posterior

$$
\begin{aligned}
& D=1 \text { Deposir Nearby \& Target } \\
& x=\# \text { Nogers } / \text { TAR } 4 \text { Evidence }
\end{aligned}
$$

In Class Assignment

$$
P(X \mid B=0)=B \text { nom }(n=5, p=05)
$$

In a typical box of chocolates, only 5% of chocolates are coconut flavored.
In a "coconut special", 50% of the chocolates are coconut flavored.
 whats the probability that the box is a "coconut special" box? $\quad P(B=1 \mid x=3)$
Assume that coconut special boxes are as common as typical chocolate boxes.
$X=\#$ coconut choc in $5 \quad .5=P(B=1)=P(B=0)$ SAMPLES
$B=1$ if coconder special
O NORMAL BOX MOL

In Class Assignment

$$
P(X \mid B=0)=B \text { nom }(n=5, p=05)
$$

In a typical box of chocolates, only 5% of chocolates are coconut flavored.
In a "coconut special", 50% of the chocolates are coconut flavored.
If one selects 5 chocolates out of a box and (x ser $(\beta=5=t h)=3$ Broom ($n=5$ and fed, 5) whats the probability that the box is a "coconut special" box?

Assume that coconut special boxes are as common as typical chocolate boxes.

$$
\begin{aligned}
& P(B=1 \mid x=3)=\frac{P(x=3 \mid B=1) P(B=1)}{P(x=3)} \cong \frac{.156}{.57}=.99
\end{aligned}
$$

$$
\begin{aligned}
P(x=3)= & P(x=3 \quad B=0)+P(x=3 \quad B=1) \\
= & P(x=3 \mid B=0) P(B=0)+P(x=3 \mid B=1) P(B=1) \\
= & \operatorname{PMF}(x=3, n=5, P=.05)(1 / 0)+ \\
& \operatorname{PMF}(x=3, n=5, P=.5)(1 / 0) \\
\cong & .57
\end{aligned}
$$

INDEPENDENCE + CONDITIONAL PROB
INDEPENDENCE
INTUITION:
Random variables x, y are independent if observing any outcome of one doesn't impact our beliefs about the other.

Alocibra:
For each outcome $P_{\text {air }} x, y$

$$
P(X=x y=y)=P(x-x) P(y=y)
$$

Bayes Rule shows the equivilence of the algebraic and intuitive definitions above!

INDEDENDENCE + CONDitional PROB
independence
intuItion:
Random variables x, y are independent if observing any outcome of one doesn't
impact our beliefs about the other.

Alozbra:
For each outcome Parr x, y $P(x=x y=y) ; P(x=x) P(y=y)$

$$
P(x \mid y)=\frac{P(x y)}{P(y)}=\frac{P(x) P(y)}{P(y)}=P(x)
$$

Notice that $\mathrm{P}(\mathrm{X} \mid \mathrm{Y})=\mathrm{P}(\mathrm{X})$. Observing Y has no impact on the prob of X !

$$
P\left(E_{0}\right)<\alpha
$$

$E i=i=T$ Hypoutess has rupe I earor

$$
\begin{aligned}
P(f W E) & =1-P(\text { NO TYPE } 1 \text { EnRORS }) \\
& =1-(1-\alpha)^{N}
\end{aligned}
$$

Bonfernanl
Nownion (Aftin clacys $\begin{aligned} & \text { Quession) })\end{aligned}$

