## CS2810 Day 3

## Admin:

- ICA late policy
- we don't take them late
- we'll drop everyone's lowest ICA @ end of semester

Topics:
Matrices (and vectors)
Solution space of systems with many solutions
vocab: Singular Matrix / Homogenous Linear System
Length of vector
Dot Product \& Angle between vectors

Marrices (and vecions)
3 cocoms)
A matax is AN ARRAY of ScALARS $D_{0,0}$ a


Maroox Has Shape 2.3
A vector is a Marex wiry I row or 1 cocumn:


More Notation and convention
Scalaes - Lowcrcase, Not Bocd $\quad x=2$
vectors - Lowercase, Bocd (computer)
"Teuly JD" marrix - upper case
neituer Oimension is 1

$$
\begin{aligned}
& \vec{x}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
& A=\left[\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right]
\end{aligned}
$$

Marenx A Has sampe $\partial 3$ Ano is $\longrightarrow A \in \mathbb{R}^{\partial \times 3}$ MADE of REAC NUMBERS

A FEN MARX OPERATIONS


Common, not entirely universal convention Assume $\mathbb{R}^{n}$ is a con vector $X \in \mathbb{R}^{4} \quad$ Assone $X=\left[\begin{array}{l}\varepsilon \\ z \\ z\end{array}\right] \quad$ Not $x=[\varepsilon \varepsilon \varepsilon ?]$

Vector ADDition : "One small step for your brain"
 ONE GIANT STEP FOR your SRIuC
$a+b$ is TAE RESULTINO DISDLACEMENT APTER TAMINC ONE a SEEP AND ONE $b$ STEP

Vector ADdition: "one small step for your braid
one giant step for your saiva


$$
\begin{aligned}
2 a-\partial b & =2\left[\begin{array}{l}
5 \\
1
\end{array}\right]-2\left[\begin{array}{c}
-3 \\
3
\end{array}\right] \\
& =\left[\begin{array}{c}
10 \\
2
\end{array}\right]+\left[\begin{array}{c}
6 \\
-6
\end{array}\right]=\left[\begin{array}{c}
16 \\
-4
\end{array}\right]
\end{aligned}
$$

$\partial a-\partial b$ is the resulting Displacement apter Tamince two a step and two Backwards b STEPS

Expressing System socotion) vin vectonn (many sownion

$$
\begin{aligned}
& \left.\left[\begin{array}{lll|l}
x & 1 & z & 1 \\
1 & 0 & 1 & 3 \\
0 & 1 & 4 \\
0 & 0 & 0 & 0
\end{array}\right] \Rightarrow \begin{array}{rl}
x+z=3 \\
y+\partial z=4 \\
z=z
\end{array} \Rightarrow \begin{array}{l}
x=3-1 z \\
y=4-2 z \\
y \\
z
\end{array}\right] \begin{array}{l}
\text { EON } \\
z+1 z
\end{array} \\
& \text { for Erey } 0
\end{aligned}
$$ on DiAOONAL, ADD



$$
\Rightarrow\left[\begin{array}{l}
x \\
2
\end{array}\right]=\left[\begin{array}{l}
3 \\
4 \\
0
\end{array}\right]+\left[\begin{array}{c}
-1 \\
-2 \\
1
\end{array}\right] 2
$$

Visualizing solution space (many solutions) WHAT ARE ALL THE $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ which SATISFY.

$$
\begin{aligned}
& {\left[\begin{array}{l}
x \\
4 \\
z
\end{array}\right]=\left[\begin{array}{l}
3 \\
4 \\
0
\end{array}\right]+\left[\begin{array}{c}
-1 \\
-0 \\
1
\end{array}\right] 2} \\
& \text { START HERE }
\end{aligned}
$$

ADD $z$ sTEPS of BLUE VECTOR


VISUALIzING SOLUTION SPACE (MANY SOLUTIONS)

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
z \\
z
\end{array}\right]+\left[\begin{array}{l}
x \\
z
\end{array}\right] y+\left[\begin{array}{l}
x \\
z
\end{array}\right] z
$$

grant Mene
Tare y steps of blue vector
TARE $Z$ STEPS of RED VEcTOR


In general, solution space is N -dimensional if there are N "free parameters" ( $y$ and z are "free" above, choose any value for them and we can find an $x$ which satisfies equality)

Homogenous Systems
$\left[\left.\begin{array}{l|l}1 & j \\ 3 & 4\end{array} \right\rvert\, \begin{array}{l}0 \\ 0\end{array}\right]$ A SuSrem is Homobeñous if \& Auomevt is ALL zEROS

$$
\left[\begin{array}{ll|l}
\text { SYSTEM } \\
1 & 2 & F \\
3 & 4 & \xi
\end{array}\right] \quad\left[\begin{array}{ll|l}
1 & 2 & 0 \\
3 & 4 & 0
\end{array}\right] \text { MONOGENEOUS }
$$

40

Vector Geometry: LEDOTH

$$
\begin{aligned}
& \left\lvert\, x=\left[\begin{array}{l}
3 \\
4
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right. \text { TUE LENOTH Of } x \text { is } \\
& \mid=\sqrt{\sum_{i} x_{i}^{2}} \\
&=\sqrt{3^{2}+4^{2}} \\
&=\sqrt{9+16} \\
&=5
\end{aligned}
$$

Vector Geometry Dot Product intuition


Dot ProDuct $X \cdot Y$
$=$ COMPONENT of $x$ LENOTH of $y$
$x$ ON DIRECTION of $Y$

$$
\begin{aligned}
& =\|x\| \cos \theta \times\|y\| \\
& =3 \times 7=21 \\
& \quad x \cdot y=\|x\|\|y\| \cos \theta
\end{aligned}
$$

Vector geometry Dot Product Another way of computing


Vector Gegmetry Dot Proover And Anoues

$$
\sum x_{i} y_{i}=x \cdot y=\|x\|\|y\| \cos \theta
$$



WHKTS TUE ANGE BETWEEN $x, y$ ?

$$
\cos \theta=\frac{a \cdot b}{\|a\|\|b\|}
$$

A BOY IS A SCALAR (not a vector)

Dot PRODVCT: WHy Do we care?
$\rightarrow$ Errendos our intuition of ANGCES To More (AND CESS) THaN $2 D / 30$ SPAces
$\rightarrow$ Allows us To DENTIFY JECTORS AT RIGAT ANOCES To EANH OTHER

