CS2810 Feb 22
Day 11
(Linear) Dynamical System - ecology

Cast CLAS)

Determinants

Eigenvalues \& Eigenvectors

- Definition
- Finding eigenvalues
- Finding eigenvectors
- A matrix with distinct eigenvalues has linearly independent eigenvectors Change of Basis and Eigenvectors

Math "Magic Trick
\# PEOPLE SoLANO 0 after 1 move

$$
\begin{aligned}
& x_{0}^{\prime}=.2 x_{0}+.3 x_{1}+.4 x_{2} \\
& x_{1}^{\prime}=2 x_{0}+.6 x_{1}+.5 x_{2} \\
& x_{2}^{\prime}=6 x_{0}+.1 x_{1}+.1 x_{3}
\end{aligned}
$$

$$
\begin{aligned}
& x_{0}^{\prime}=.2 x_{0}+3 x_{1}+.4 x_{2} \\
& x_{1}^{\prime}=.2 x_{0}+.6 x_{1}+.5 x_{3} \\
& x_{2}^{\prime}=6 x_{0}+.1 x_{1}+.1 x_{2} x^{A F T E \Omega} \begin{array}{c}
\text { More } \\
\text { MO }
\end{array} \\
& {\left[\begin{array}{l}
x_{0}^{\prime} \\
x_{1}^{\prime} \\
x_{0}^{\prime}
\end{array}\right]^{k}=\left[\begin{array}{l}
.2 \\
.2 \\
.6
\end{array}\right] x_{0}+\left[\begin{array}{l}
-3 \\
-6 \\
-1
\end{array} x_{x_{1}+\left[\begin{array}{c}
-4 \\
-5 \\
-1
\end{array}\right] x_{3}=\left[\begin{array}{ccc}
-2 & 3 & \cdot 4 \\
-2 & .6 & .5 \\
.6 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{0} \\
x_{1} \\
x_{2}
\end{array}\right]}^{x^{\prime}}\right.}
\end{aligned}
$$

IC 1
White Matrix A which Represents is LAnd Population After 1 STEP

$$
\begin{aligned}
& x_{0}^{\prime}=x_{0}-.2 x_{0}+.2 x_{3} \\
& x_{1}^{\prime}=x_{1}+.2 x_{0}-.4 x_{1} \\
& x_{0}^{\prime}=x_{2}+.4 x_{1}-.1 x_{3} \\
& x_{3}^{\prime}=x_{3}+.1 x_{2}-.2 x_{3}
\end{aligned}
$$

Dynamical System Question $>$

- Why/ WHEN Does it alate STENOY STARE Distribution?
- How can 1 Find STEADY STATE DISTRIBUTION?
(MORE LATER)
$\partial \times \partial$ casE
A value associated with each square matrix:
- A matrix with dit = 0 has linearly dependent columns
(some nonzero linear combination of columns = zero vector)
Notation

$$
\begin{aligned}
& \operatorname{Det}(A)=|A|=\left|\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right|=a d-b c \\
& \partial_{\partial \times \partial} \text { casE }
\end{aligned}
$$

Dererminaut (3×3 case)

$$
\left.\begin{array}{rl}
|A|= & {\left[\begin{array}{lll}
a & b & c \\
d & & f \\
g & f & i
\end{array}\right]=a e i+b f g+c d h} \\
-a f h-b d i-c e g
\end{array}\right]+\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & b & i
\end{array}\right] .
$$

Evonvalues t Elowuerors)
An eigenvector is a non-zero vector, v , associated with a square matrix multiplying Δv andros, 'out aoesn't change its direction

$$
\begin{aligned}
& A\left[\begin{array}{l}
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]=\lambda\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& \text { WHY } \stackrel{0}{0} \text { is Not EO vC }
\end{aligned}
$$

Geometry of Elonvector/Euenvalue
Notice:
$A v=\lambda N$ is in same onceran As

Domain
MUST BE \longrightarrow CODOMAN same Dimension

$$
\begin{aligned}
& {\left[\begin{array}{l}
1 \\
1
\end{array}\right]=v \quad \text { AND } \quad \lambda=6} \\
& {\left[\begin{array}{l}
1 \\
24 \\
24
\end{array}\right] \quad A v=\lambda v} \\
& A v\left[\begin{array}{l}
1 \\
24 \\
24
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=1\left[\begin{array}{l}
1 \\
2
\end{array}\right]+1[5 \\
& \lambda v=6[i]=\left[\begin{array}{l}
6 \\
6 \\
6
\end{array}\right]
\end{aligned}
$$

ICA 2:
Below are all the eigenvectors / eigenvalues of A. Match each eigenvector to its corresponding eigenvalue.

$$
\begin{aligned}
& \lambda=6 \\
& \left.v=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \begin{array}{l}
\lambda=-1 \\
2
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
1 & 5 \\
2 & 4
\end{array}\right] \\
& \text { Revenger }
\end{aligned}
$$

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
1 & 5 \\
2 & 4
\end{array}\right] \quad v=\left[\begin{array}{c}
-5 \\
2
\end{array}\right] \lambda=-1 \\
& A v=\left[\begin{array}{ll}
1 & 5 \\
2 & 4
\end{array}\right]\left[\begin{array}{c}
-5 \\
2
\end{array}\right]=-5\left[\begin{array}{l}
1 \\
2
\end{array}\right]+2\left[\begin{array}{c}
5 \\
4
\end{array}\right]=\left[\begin{array}{c}
-5 \\
-10
\end{array}\right]+\left[\begin{array}{c}
10 \\
8
\end{array}\right] \\
& v \lambda=\left[\begin{array}{c}
-5 \\
2
\end{array}\right]-1=\left[\begin{array}{c}
5 \\
-2
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& A_{v}=\lambda v \\
& A(\underset{\text { ccuan }}{v})=c\left(A_{v}\right)=c(\lambda v)=\lambda v \\
& \text { scaian } \\
& \text { (with same eigenvalue) }
\end{aligned}
$$

Observe: Emenderrors Associated $\omega /$ Same λ Not unlaue

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & 5 \\
2 & 4
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=1\left[\begin{array}{l}
1 \\
2
\end{array}\right]+1\left[\begin{array}{l}
5 \\
4
\end{array}\right]=\left[\begin{array}{l}
6 \\
6
\end{array}\right]=6\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad A[1]=6[1]} \\
& {\left[\begin{array}{ll}
1 & 5 \\
2 & 4
\end{array}\right]\left[\begin{array}{l}
\partial \\
2
\end{array}\right]=2\left[\begin{array}{l}
1 \\
2
\end{array}\right]+2\left[\begin{array}{l}
5 \\
4
\end{array}\right]=\left[\begin{array}{l}
0 \\
12
\end{array}\right]=6\left[\begin{array}{l}
\partial \\
2
\end{array}\right] \quad A\left[\partial=6\left[\begin{array}{l}
2 \\
2
\end{array}\right]\right.}
\end{aligned}
$$

Any scacar Moltiple of eic vec is Another eio vec w/ same λ

Punch Line $\quad A v=\lambda v$ Ax
Toy

$$
\begin{aligned}
A\left(c_{0} v_{0}+c_{1} v_{0}\right) & =c_{0} A v_{0}+c_{1} A v_{1} \\
& =c_{0} \lambda_{0} v_{0}+c_{1} \lambda_{1} v_{1}
\end{aligned}
$$

Since

$$
x=c_{0} v_{0}+c_{1} v_{1}
$$

Finding Eigenvalues
Want: Method of Finding λ_{1}, Pairs from A Have: $A_{v}=\lambda v \rightarrow A v=\lambda I v$ identity maras

Some Non-zeno liner Combo of columns of This MaTRix is tue zero version

WANT: λ wiTH DET $(A-\lambda I)=0$
find Eloenvacues of $A=\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right]$

$$
\begin{aligned}
A-\lambda I & =\left[\begin{array}{ll}
1 & 5 \\
2 & 4
\end{array}\right]-\left[\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right]=\left[\begin{array}{cc}
1-\lambda & 5 \\
2 & 4-\lambda
\end{array}\right] \\
0=0 \in T(A-\lambda I) & =(1-\lambda)(4-\lambda)-\partial \cdot 5 \\
& =4-4 \lambda-\lambda+\lambda^{2}-10 \quad \lambda=6 \text { on } \lambda=-1 \\
& =\lambda^{2}-5 \lambda-6 \\
& =(\lambda-6)(\lambda+1)
\end{aligned}
$$

Every NaN Marrix Has N Eloenvanes Since

Euery Poltnomiar of order N Has N noors

Find corresoondino EuEvvector $A=\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right]$

$$
\begin{aligned}
& (A-\lambda I) v=0 \\
& (A-(-1) I) v=0 \quad\left[\begin{array}{ll}
\partial & 5 \\
\partial & 5
\end{array}\right]\left[\begin{array}{l}
v_{0} \\
v_{1}
\end{array}\right]=\left[\begin{array}{l}
2 \\
\partial
\end{array}\right] 10+\left[\begin{array}{l}
5 \\
5
\end{array}\right]-4=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& \left(\left[\begin{array}{ll}
1 & 5 \\
2 & 4
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) v=0 \quad v=\left[\begin{array}{c}
10 \\
-4
\end{array}\right] \text { or }\left[\begin{array}{c}
-5 \\
2
\end{array}\right]
\end{aligned}
$$

Finding an eigenvalue of square matrix:
Find roots of "characteristic polynomial"
Sone $\operatorname{DET}(A-\lambda I)=0$
Finding an eigenvector associated with eigenvalue:
Solve $(A-\lambda I) v=0$
ica Find all Eigenvecror / Guenvalue Pairy

$$
\begin{aligned}
& \text { of } \quad A=\left[\begin{array}{rr}
7 & 3 \\
3 & -1
\end{array}\right] \\
& \left.\operatorname{DET}\left(\left[\begin{array}{cc}
7 & 7 \\
3 & -1
\end{array}\right)-\left[\begin{array}{cc}
\lambda & 0 \\
0 & \lambda
\end{array}\right]\right)=0=\operatorname{DET}\left(\begin{array}{cc}
7-\lambda & 3 \\
3 & -1-\lambda
\end{array}\right]\right) \\
& 0=(7-\lambda)(-1-\lambda)-9 \\
& =-7+\lambda-7 \lambda+\lambda^{2}-9=\lambda^{2}-6 \lambda-16=(\lambda-8)(\lambda+2)
\end{aligned}
$$

$$
\begin{aligned}
& (A-\lambda I) v=\overrightarrow{0} \\
& A=\left[\begin{array}{cc}
7 & 3 \\
3 & -1
\end{array}\right] \\
& \left(\left[\begin{array}{rr}
7 & 3 \\
3 & -1
\end{array}\right]-\left[\begin{array}{cc}
-2 & 0 \\
0 & -2
\end{array}\right]\right) v=\overrightarrow{0} \\
& \lambda=8 \text { on }-2 \\
& v=\left[\begin{array}{c}
1 \\
-3
\end{array}\right] \\
& {\left[\begin{array}{ll}
9 & 3 \\
3 & 1
\end{array}\right]\left[\begin{array}{l}
v_{0} \\
v_{1}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]=1\left[\begin{array}{l}
9 \\
3
\end{array}\right]+3\left[\begin{array}{l}
3 \\
1
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
7 & 3 \\
3 & -1
\end{array}\right] \rightarrow(A-\lambda I) v=0 \rightarrow\left[\begin{array}{cc}
7-8 & 3 \\
3 & -1-8
\end{array}\right] v=0 \\
& \rightarrow\left[\begin{array}{cc}
-1 & 3 \\
3 & -9
\end{array}\right] v=0 \rightarrow v=\left[\begin{array}{l}
3 \\
1
\end{array}\right] \text { Has } \lambda=8
\end{aligned}
$$

NJMPY

How DoEs TUE MAOIC insibut: Ware x AS a TRICK WORK? Linear combo of El secs of A

$$
\begin{aligned}
& X=C_{0} V_{0}+C_{1} V_{1}+C_{2} V_{2} \\
& E \text { Jo V ec } O C=X \\
& C=(116 \sqrt{ } C)^{-1} X
\end{aligned}
$$

$$
\begin{aligned}
A_{x}^{100} & =A^{100}\left(c_{0} v_{0}+c_{1} v_{1}+c_{2} v_{0}\right) \\
& =c_{0} \frac{A^{100}}{}+c_{1} A_{1}^{100}+c_{2} \frac{A^{100} v_{0}}{100} \\
& =c_{0} \lambda_{0} v_{0}+c_{1} \lambda_{1} v_{1}+c_{2} \lambda_{2} v_{3}
\end{aligned}
$$

$$
A x=A\left(C_{0} v_{0}+C_{1} v_{1}+c_{0} v_{0}\right)
$$

is एuis Good for ANyTHMO Besiocs "MAGic"?
"Marnix Diagonalization" is computationacey efficient

