CS 2810 Day 7
 Feb 82022

Admin: ICA in notes

Describing a set of vectors:
-span
-linear (in)dependence

An astronaut is spinning in outer space and needs to stop before they get dizzy! Their spaceship needs impulse $b=[10,-11,0]^{\wedge}$ T to stop rotating, what control signals $x _0, x_{-} 1$ should they use with their boosters $\mathrm{a}_{-} 0, \mathrm{a} _1, \ldots$ to stop?

$$
\begin{aligned}
& {\left[\begin{array}{l}
k \\
k
\end{array}\right]=x_{0}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+x_{1}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{0} \\
x_{1}
\end{array}\right]} \\
& {\left[\right.}
\end{aligned}
$$

ICA 1: An astronaut is spinning in outer space and needs to stop before they get dizzy! Their spaceship needs impulse $\operatorname{lvec}\{b\}=\left[b_{-} 0, b_{-} 1, b_{-}\right.$] to stop rotating.

- Is there always a control signal $x _0, x_{-} 1$ which produces the needed impulse, for any $\backslash v e c\{b\}$?
- If not, which impulses, b, can be generated from boosters a_0, a_1?
- What boosters would you need to add to ensure that the rocket can produce any impulse?
- No! if $b _2=0$, then b cannot be written as a linear combo of $a _0, a _1$
- all the b where $b _2=0$ (can be any value in $b _0$ and $b _1$).

$$
b=x_{0}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+x_{1}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

for some $x_{0} x_{1} \in \mathbb{R}$

$$
a_{\partial}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \quad a_{2}=\left[\begin{array}{l}
k \\
k \\
\frac{k}{p}
\end{array}\right]<
$$

Span [and its rocket ship connection]
The span of a set of vectors $a_{-} 0, a_{-} 1, a_{-} 2, \ldots$ is the set of all vectors which can be written as a linear combination

$$
\operatorname{Sen}\left(\vec{a}_{0} \vec{a}_{1} \vec{a}_{0}\right)=\left\{x_{0} a_{0}+x_{1} \vec{a}_{i}+\cdots \mid x_{i} \in \mathbb{R}\right\}
$$

[The span of boosters $a_{-} 0, a_{-} 1, a-2$ are all the impulses that they could possibly create]

$$
a_{0}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \text { is }\left[\begin{array}{l}
11 \\
0
\end{array}\right] \text { N } \operatorname{spn}\left(a_{0}\right) ?
$$

CA 2 SHADE TUE SPAN of EAch SET of vEctors $x_{0} a_{0}+x_{1} a_{0}=\left[\begin{array}{l}k \\ 4\end{array}\right]$

ICA 3: Which of the rockets below is capable of producing any rotation $\backslash v e c\{b\}=\left[b _0, b _1, b _2\right]^{\wedge} T$ while costing the least amount of money?
What conditions must $a_{-} 0, a_{-}, a_{-}, \ldots$ meet so that the rocket can produce any rotation?

Rocucr $C(\$ 5) \quad a_{3}=1 \cdot a_{1}+2 a_{0}+3 a_{2}$

Linear independence (definition 1 of 2)
We say that a set of vectors $a_{-} 0, a_{-} 1, a_{2} 2, \ldots$ is linearly dependent if some vector can be written as a linear combination of the others:

THERE Exists $x_{i} \in \mathbb{R}$ wry $a_{0}=x_{1} a_{1}+x_{2} a_{2}+\ldots$
[Linearly dependent boosters are wasteful ... they produce an impulse which could've been created by the other boosters]

Linear independence (definition 2 of 2)
We say that a set of vectors $a_{-} 0, a_{_} 1, a_{_} 2, \ldots$ is linearly dependent if there exists some scalars $x_{-} 0, x_{-} 1, \ldots$ (not all equal to zero) with:

Testing for linear Dependence
Are $\left[\begin{array}{l}2 \\ 0 \\ 0\end{array}\right]\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}4 \\ 2 \\ 2\end{array}\right]$ Linearcy DeDENDENT?
GOAL: FIND ALL $x_{0} x_{1} x_{3}$ wITH

$$
\vec{O}=\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right] x_{0}+\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] x_{1}+\left[\begin{array}{l}
4 \\
2 \\
2
\end{array}\right] x_{2}
$$

if ANY NoN zENO Socorions ExisT \rightarrow LINEAR Dependence

Testing for linear Dependence
GOAL: FIND ALL $x_{0} x_{1} x_{3}$ with

$$
\begin{aligned}
& \vec{O}=\left[\begin{array}{l}
\partial \\
0 \\
0
\end{array}\right] x_{0}+\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] x_{1}+\left[\begin{array}{l}
4 \\
2 \\
2
\end{array}\right] x_{3}=\left[\begin{array}{lll}
\partial & 1 & 4 \\
\partial & 2 \\
0 & 1 & \partial
\end{array}\right]\left[\begin{array}{l}
x_{0} \\
x_{1} \\
x_{0}
\end{array}\right] \\
& {\left[\begin{array}{lll|l}
\partial & 1 & 4 & 0 \\
\partial & 0 & \partial & 0 \\
0 & 1 & \partial & r_{1}^{\prime}-r_{1}-r_{0} \\
0
\end{array}\right]\left[\begin{array}{ccc|c}
\partial & 1 & 4 & 0 \\
0 & -1 & -2 & 0 \\
0 & 1 & \partial & 0
\end{array}\right] \stackrel{r_{0}^{\prime}=r_{0}+r_{1}}{\Delta}\left[\begin{array}{cc|c}
\partial & 1 & 4 \\
0 & 1 & -2 \\
0 & 0
\end{array}\right]}
\end{aligned}
$$

zero row $->$ many solutions exist $->$ non-zero solution exists $->$ linear dependence

Testing for linear Dependence
Are $\left[\begin{array}{l}1 \\ a_{0} \\ 1\end{array}\right]\left[\begin{array}{l}1 \\ a_{1} \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ a_{0} \\ 1\end{array}\right]$ LinEarcy DepENDENT?

CA 4 Determine if the following set of vectors is linearly independent

$$
\left[\begin{array}{c}
1 \\
-3 \\
0
\end{array}\right]\left[\begin{array}{c}
4 \\
0 \\
8
\end{array}\right]\left[\begin{array}{c}
3 \\
-1 \\
5
\end{array}\right]
$$

```
matt@matt-yoga1:~$ python3
Python 3.8.10 (default, Nov 26 2021, 20:14:08)
[GCC 9.3.0] on linux
Type "help", "copyright", "credits" or "license" for more
>>> import sympy
s>>>
>>> x = sympy.Matrix([[1, 4, 3], [-2, 0, -1], [0, 8, 5]])
>>> x
Matrix([
[ 1, 4, 3],
[-2, 0, -1],
[ 0, 8, 5]])
>>> x.rref
[1, 0, 1/2],
[0,1, -,0]
[0, 0, 0]]), (0, 1))
```

The span of N linearly independent vectors is an N dimensional space Od space: point
1d space: line
2d space: plane
3d space: we live in a 3d space, ...

1 linear indep vec
$->1$ d span

Some final, helpful facts to remember:

1. The span of N vectors is never more than an N dimensional space
2. N+1 or more vectors of length N are linearly dependent

A and Matnix nothes 30° clockwise

$$
\left[\begin{array}{l}
1 \\
2
\end{array}\right]\left[\begin{array}{l}
3 \\
4
\end{array}\right]\left[\begin{array}{l}
5 \\
6
\end{array}\right]
$$

3 vectons of LENOTH ∂

$$
N+1
$$

$$
N
$$

