CS 2810 Day 7 Feb 8 2022

Admin: ICA in notes

Describing a set of vectors:
-span

-linear (in)dependence

An astronaut is spinning in outer space and needs to stop before they get dizzy! Their spaceship needs impulse $b = [10, -11, 0]^T$ to stop rotating, what control signals x_0 , x_1 should they use with their boosters a_0 , a_1 , ... to stop?

$$\begin{bmatrix} z \\ z \\ z \end{bmatrix} = \begin{bmatrix} x_0 \\ 0 \end{bmatrix} + \begin{bmatrix} x_1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \end{bmatrix}$$

ICA 1: An astronaut is spinning in outer space and needs to stop before they get dizzy! Their spaceship needs impulse $\sqrt{b} = [b_0, b_1, b_2]$ to stop rotating.

- Is there always a control signal x_0 , x_1 which produces the needed impulse, for any \sqrt{b} ?
- If not, which impulses, b, can be generated from boosters a_0, a_1?
- What boosters would you need to add to ensure that the rocket can produce any impulse?

Span [and its rocket ship connection]

The span of a set of vectors a_0, a_1, a_2, ... is the set of all vectors which can be written as a linear combination

SPAN
$$(\vec{a_0}, \vec{a_1}, \vec{a_2}) = \{x_0\vec{a_0} + x_1\vec{a_1} + ... | X \in \mathbb{R} \}$$

[The span of boosters a_0, a_1, a_2 are all the impulses that they could possibly create]

ICA 3: Which of the rockets below is capable of producing any rotation $\sqrt{b} = [b_0, b_1, b_2]^T$ while costing the least amount of money? What conditions must a_0, a_1, a_2, ... meet so that the rocket can produce any rotation?

SPAN
$$(a,a,a_3) = \mathbb{R}^3$$
Its possible to produce every b

from linear combinations of a

$$a_{s}=\begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$a_{1}=\begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$q_3 = 1 \cdot \alpha_1 + 2 \alpha_0 + 3 \alpha_0$$

Linear independence (definition 1 of 2)

We say that a set of vectors a_0, a_1, a_2, ... is linearly dependent if some vector can be written as a linear combination of the others:

[Linearly dependent boosters are wasteful ... they produce an impulse which could've been created by the other boosters]

Linear independence (definition 2 of 2)

We say that a set of vectors a 0, a 1, a 2, ... is linearly dependent if there exists some scalars $x_0, x_1, ...$ (not all equal to zero) with:

TESTING FOR LINEAR DEPENDENCE

HUE [3][0],[4] LINEARLY DEDENDENT?

GOAL: FIND ALL XO X, XS WITY

 $\vec{O} = \begin{bmatrix} 3 \\ 3 \\ 4 \end{bmatrix} \times 0 + \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix} \times 1 \times 1$

IF ANY NON ZERO SOCUTIONS EXIST -> LINEAR

DEDENDENCE

TESTING FOR LINEAR DEPENDENCE

zero row -> many solutions exist -> non-zero solution exists -> linear dependence

TESTING FOR LINEAR DEDENDENCE

LINEARLY DEDENDENT

- 1. form matrix from columns of A
- 2. row reduce to RREF
- 3. if non zero solution exists -> linear dependence

if only zero solutions exists -> linear independence

1CA 4

Determine if the following set of vectors is linearly independent

```
\begin{bmatrix} 1 \\ -3 \\ 0 \end{bmatrix} \begin{bmatrix} 4 \\ 8 \\ 5 \end{bmatrix} \begin{bmatrix} 3 \\ -1 \\ 5 \end{bmatrix}
```

```
ZERO KOW
```

DEDENDENT

```
matt@matt-yoga1:~$ python3
Python 3.8.10 (default, Nov 26 2021, 20:14:08)
[GCC 9.3.0] on linux
Type "help", "copyright", "credits" or "license" for more
>>> import sympy
S>>>
>>> x = sympy.Matrix([[1, 4, 3], [-2, 0, -1], [0, 8, 5]])
>>> X
Matrix([
         0]]), (0, 1))
```

The span of N linearly independent vectors is an N dimensional space 0d space: point 1d space: line 2d space: plane 3d space: we live in a 3d space, ...

1 linear indep vec ->1d span

3 linear dependent vecs
-> span is not 3 dimensional

Some final, helpful facts to remember:																																				
. 1	The span of N vectors is never more than an N dimensional space																۰	۰	۰																	
			-																								-									
	۰		0	٠	٠	٠	۰		٠	۰	۰		٠	۰	٠	٠		٠	٠	٠		٠	۰	۰	٠	٠	٠			٠	٠	٠	٠	•	٠	٠
	٠	۰	٠	٠	٠	٠	۰	٠																												
2.	Ņ	+1	OI	· r m	IOI	re	v.e	cto	ors	S .O	f.le	en	gtŀ	n. N	1. a	ire	Hi	ne	ar	ly.	de	pe	nc	der	nţ		•						•			•
	۰		٠	٠	٠																															

.

.

.

.

3 VECTORS OF LENGTH 2

