Line of best fit \rightarrow will be a video in the future

LD so you get everything you need for HW 3 now

Admin

- For my ICAs for my lectures, we are moving to the following format:
- Every lecture, you will answer *the same* three questions:

1. What did you learn from this lecture?
2. What are you confused about?
3. (a question about either an ICA or a homework problem)

- I will stop lecture 10 minutes early for you to do this. You are expected to do this during class time.
determinants, inverses, change of basis

Lo content for HW3 + HW 4 b is on the website now

Determinants

$\operatorname{det}=4$

- Say that you have a transformation defined by the matrix $A=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$

4 timen bigger

Determinants

$\operatorname{det}=4$

. Say that you have a transformation defined by the matrix $A=\left[\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right]$

4 tines bigger t shanty!

Determinants

- Why? \rightarrow a Scalar
- Tell us how this matrix would squish or stretch space when applied to vectors
- A determinant of \qquad >1 would mean that space was stretched
- A determinant of $\frac{0-1}{4}$ would mean that space was squished $(0,1)$ \rightarrow U save size special!

Determinants - ICA Question 1

Say you have this matrix: $A=\left[\begin{array}{ll}2 & 2 \\ 3 & 3\end{array}\right]$
First, draw the resulting space as applied to \hat{i} and \hat{j}.
Then, make a proposal for what the determinant should be. \rightarrow det of 0

Determinants

- A determinant of $\quad 0$ would mean that space was reduced in

Determinants - inverting space $\left.\begin{array}{c}(1 \cdot-1) \\ -1\end{array}\right)=\left(\frac{1}{1} \cdot 1\right)=-2$

- Say that you have a transformation defined by the matrix $A=\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$

Determinants - inverting space

- A determinant that is hegatíuemeans that space has been flipped

det \rightarrow approacking 0

det \rightarrow approaching -1

Determinants in 3 dimensions

- Same idea as 2 dimensions, but this time they tell us about how much volume (instead of area) gets scaled.
- The cube defined by $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ might become a taller cube, a wider
cube, or a slanty and squished cube!
- Fun word of the day: parallelepiped
-

Calculating determinants

- With $\mathrm{a} 2 \times 2$ matrix, $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, the determinant is: $\mathrm{ad}-\mathrm{bc}$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
2 & 2 \\
3 & 3
\end{array}\right]=(2 \cdot 3)-(2 \cdot 3)=6 } \\
& {\left[\begin{array}{lll}
a & b & c
\end{array}\right]\left[\begin{array}{cc}
1 & -3 \\
4 & 2
\end{array}\right] }=(1 \cdot 2)-(-3 \cdot 4) \\
&=14
\end{aligned}
$$

For a 3×3 matrix $\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$. this is "complicated" \rightarrow combined scaled deft. of 2×2 matrices

Calculating determinants

- But really just ask python/your computer to do this for you: np.linalg.det(matrix)

In [16]:

```
import numpy as np
# getting the determinant of a matrix
4 A = np.array([[1, 2, 3], [0, 5, 0], [1, 2, -2]])
5 print(np.linalg.det(A))
-24.999999999999996
```


Inverses

- We saw these last lecture!
- We know that $A^{-1} A=I$ where I is the identity matrix
- But what is happening is space?

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Inverses

- Spatially, how do we get "back to" our original vectors after applying A ?

$$
\left[\begin{array}{c}
1 \\
-10 \\
-10
\end{array}\right]\left[\begin{array}{c}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
0
\end{array}\right]
$$

Inverses

- Inverses have some neat properties!
- if $A x=b$ then $x=A^{-1} b$
- $A^{-1} A=I$

Inverses

- In practice (in the real world), you'll ask your computer for the inverse of a matrix when needed

Inverses \& Determinants

- How are inverses related to determinants?
- if $\operatorname{det}(A) \neq 0$, then the inverse exists
- if $\operatorname{det}(A)=0$, then there is no inverse

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \operatorname{det}(A)=1
$$

Inverses

- Inverses have some neat properties!
- Say that you have a system of equations that we can write as:

$$
\begin{aligned}
& \text { matrix }
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
1 & 2 & -1 & 10 \\
1 & 1 & 0 & 2 \\
1 & -1 & 1 & 3
\end{array}\right]} \\
& A x=b \quad x=A^{-1} b
\end{aligned}
$$

Inverses - calculating - ICA question 2
Say you have the matrix $A=\left[\begin{array}{ll}1 & -2 \\ 2 & -3\end{array}\right]$ and we want to find A^{-1}.
We know that A^{-1} is of shape 2×2 and that $\left[\begin{array}{cc}1 & -2 \\ 2 & -3\end{array}\right]\left[\begin{array}{cc}a & b \\ c & d\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\left[\begin{array}{ll|ll}1 & -2 & 1 & 0 \\ 2 & -3 & 0 & 1\end{array}\right] \rightarrow \begin{aligned} & \text { row operations so that the } \\ & \\ & \text { left side is } I\end{aligned}$ left side is I
LD the right side becours A^{-1}
(Also check your answer by calculating $A^{-1} A$)

Inverses - calculating - ICA question 2

$$
\begin{aligned}
& {\left[\begin{array}{cc|cc}
1 & -2 & 1 & 0 \\
2 & -3 & 0 & 1
\end{array}\right] \rightarrow r_{2}=r_{2}-2 r_{1}\left[\begin{array}{cc|cc}
1 & -2 & 1 & 0 \\
0 & 1 & -2 & 1
\end{array}\right]} \\
& \text { b } \\
& r_{1}^{\prime}=r_{1}+2 r_{2} \\
& \text { 1) Solve for } a, b, c, d \\
& \text { 2) use a formula: } \\
& \frac{1}{\text { dst }}\left[\begin{array}{l}
\text { sone switching } \\
\text { w/ ne gaines }
\end{array}\right] \\
& {\left[\begin{array}{lll}
1 & 0 & \begin{array}{ll}
-3 & 2 \\
0 & 1
\end{array} \\
A^{-1} & 1
\end{array}\right]}
\end{aligned}
$$

Inverses \& python

- And with python....

```
    In [21]: 1 import numpy as np
# get the inverse
A = np.array([[1, 2, -1], [1, 1, 0], [1, -1, 1]])
A_inv = np.linalg.inv(A)
print(A_inv)
# multiply the constants by the inverse to get
# the values of x, y, z
10 v = np.array([[10, 2, 3]])
11 print(A_inv @ v.T)
l

\section*{Inverses}
- Wait, aren't there other ways to calculate inverses?
- Yes!
- See the resources at the end of the lecture for descriptions of other ways to do this!

\section*{Change of basis}
- Recall: when we learned about span we learned that our default basis vectors are \(\hat{i}\) and \(\hat{j}\).
- However, we may want to translate coordinates to/from system with different basis vectors.



\section*{Change of basis}
- Our friend tells us that the pizza shop is at \(\left[\begin{array}{l}3 \\ 1\end{array}\right] \begin{aligned} & \text { easf } \\ & \text {, however, we know that } \\ & \text { north }\end{aligned}\) they have redefined "east" to be northeast and "north" to be "northwest"

\section*{}
\[
\begin{aligned}
& b_{2} b_{1} \oiint\left[\begin{array}{l}
1 \\
0 \\
-1
\end{array}\right] \leftrightarrow \hat{\imath}+\hat{\jmath} \\
& \begin{aligned}
{\left[\begin{array}{cc}
1 & 0 \\
2 & -1
\end{array}\right]\left[\begin{array}{c}
b \text {-based } \\
\text { coord }
\end{array}\right] } & =\left[\begin{array}{l}
\hat{\imath} \\
\hat{\jmath}
\end{array}\right] \\
A & =b
\end{aligned} \\
& x=A^{-1} b
\end{aligned}
\]

Change of basis
- To translate any vector from another basis to our basis:
- \(A=\left[\begin{array}{l}\text { their basis vectors } \\ \text { according to us }\end{array}\right] \hat{\imath}+\hat{\jmath}\)
\(\left.\begin{array}{rlr}\text { their co-ord } & =\left[\begin{array}{l}x_{t} \\ y_{t}\end{array}\right] \quad \text { our co-ord } & \hat{\imath}+\hat{\jmath} \\ b_{1}+b_{2}\end{array} \quad \begin{array}{l}x_{u} \\ y_{u}\end{array}\right]\)
\(A\left[\begin{array}{l}x_{t} \\ y_{t}\end{array}\right]=\left[\begin{array}{l}x_{u} \\ y_{u}\end{array}\right]\) from their coord \(\rightarrow\) ours
\(\left[\begin{array}{l}x_{t} \\ y_{t}\end{array}\right]=A^{-1}\left[\begin{array}{l}x_{u} \\ y_{u}\end{array}\right] \begin{aligned} & \rightarrow \text { translate from } \\ & \text { us to them }\end{aligned}\)
- is a supp. video "linked" at the end
- MOST agree on the origin

Schedule

Turn in ICA 9 on Canvas HW 3 is due on Sunday
Quiz-test 1 is in class on Thursday
\begin{tabular}{|l|l|l|l|l|l|}
\hline Mon & Tue & Wed & Thu & Fri & Sat
\end{tabular}

\section*{More recommended resources on these topics}
- Youtube: "The determinant | Chapter 6, Essence of Linear Algebra" 3Blue1Brown
- Youtube: "Inverse matrices, column space, and null space | Chapter 7, Essence of Linear Algebra" 3Blue1Brown
- Finding the Inverse of a Matrix: https://courses.lumenlearning.com/ ivytech-collegealgebra/chapter/finding-the-inverse-of-a-matrix/
- Youtube: "Change of basis | Chapter 13, Essence of Linear Algebra" 3Blue1Brown

Quiz-test 1
- in person on Thurs ( 1 11:45
- Swell Eng. 108 (hence!)
- no calculators
- edit the collaborative study guide on piazza!
- Just on HW1 + 2 material```

