CS2810 Day 16

Mar 22
Admin:
Quiz2 grades release thurs (quiz2 mean .830 vs quiz 1 mean .832)
Content:
Continuous Distributions
Normal Distributions
Cumulative Distribution Functions
Central Limit Theorem

Discagre Distabonion us Continuous Distanbution

x Has samoués solace $\{0,1 b, 1 / 4\} \quad x$ takes any value from $\begin{aligned} & 0 \text { from } \\ & 0\end{aligned}$

$$
\begin{aligned}
& \sum_{i} P\left(x_{i}\right)=1 \\
& 0 \leq P\left(x_{i}\right) \leq 1 \\
& \text { Disc. } 10<1000 \\
& \therefore \text { Prob mass function } \\
& \text { MF } \\
& \int_{-\infty}^{\infty} P(x)=1 \\
& 0 \leq P\left(x_{i}\right) \\
& \text { Dismenoron } \\
& \text { is Pros Density fac } \\
& \text { PDF }
\end{aligned}
$$

$$
P(x)^{4}
$$

The $P(x)=x$ CONUNDRUM
LET x bE A CONTINOOSS RANDOM SARBCE ON

WHAT is Prob that x is Exactor .5?

$$
\begin{aligned}
& P(x=.5)>0 \\
& P(x-.5)=1
\end{aligned}
$$

(won't work since there are infinitely many values of positive of x, "sum of (uncountable) infinite number
(this suggests x cant be anything else, no prob leftover)

THE $P(x)=x$ CONUNDRUM

$$
P(x=1 / 8)=0
$$

Probability of outcomes in continuous Distribution can be zero
in a continuous distribution, the probability of an outcome (which happens) is zero

So whars pof o00D for thent. \rightarrow CONTINNODS Distribution

Continuous Distribution's Prob Distribution Function gives the probability an outcome falls in some range via integration:

Given x has PDF
Area under
Compote A POF FRom $4<07$

$$
\begin{aligned}
P(4<x<7)=\int_{4}^{7} \frac{1}{10} d x=\left.\frac{x}{10}\right|_{4} ^{7} & =\frac{7}{10}-\frac{4}{10} \\
& =3 / 10
\end{aligned}
$$

Given $x \sim N(7,11)$ comate Prob that x is BETWEEN /6) AND 10

$$
P(G<x<10)=\int_{0}^{10} \frac{1}{\sqrt{11} \sqrt{2 \pi}} e^{-1 / 2} \frac{(x-7)^{2}}{11} d x
$$

The CDF gives the probability that an outcome is less than c
Gwen RJ x with PDF $P(x)$

$$
\operatorname{cof}(c)=P(x<c)=\int_{-\infty}^{c} P(x)^{c} d x
$$

CDF Demo

CA
Given the PDF to the right, compute:
$P(x)$

1. the probability that X is between 10 and 11
2. the probability X is less than 8
3. Express your answers for each of the above using only the CDF (not the PDF)
(+) As c gets smaller and smaller, describe the behavior of the CDF
(+) As c gets larger and larger, describe the behavior of the CDF
(1) $P(10 \leq x \leq 11)=1 / 4=\operatorname{cof}(11)-\operatorname{cof}(10)$
(2) $P(x \leq 8)=1 / 4=\operatorname{cof}(8)-\operatorname{cof}(7)$

$$
P(10 \leq x \leq 11)=1 / 4=\operatorname{cof}(11)-\operatorname{cof}(10)
$$

Given $x \sim N(7,11)$ comate Prob that x is BETWEEN /6 and 10

Demo: Updated Prob / Stats Calculator

$$
\operatorname{CDF}(10)-\operatorname{CDF}(6) \cong .435
$$

Central Limit Theorem

As we add more independent random variables together, the resulting sum gets closer and closer to normally_distributed

Sum of 7
Coin furs

$\operatorname{BinOm}(n=3, p=.5)$
$\operatorname{Binom}(n=7, p=.5)$

Sum of 100 coin FLiPs

$\operatorname{Binom}(n=10, p=.5)$

Demo: CLT

Galton Board on YouTube
$x_{0}=-1<x_{0}=1$ if first $P_{\text {es }}$ move is Riant
 LEFT $0_{0}^{0}, y^{2}, X_{1}=1$ if JND Pec more is nim

Normal Diserioutions useful Landmanx

95% of dara Lics in 1.96 STD DEviATION)

Why is the normal distribution so popular?
1.We often sum independent random variables

CLT tells us this sum is (roughly) normally distributed
2. Linear Functions of Normal Random Variables are also Normal!

And the linearity of expectation formulae can tell us the mean and variance of the sum!

ILA $2 \quad X_{0}+x_{1}+x_{2}+x_{3}+\ldots+x_{399} \&$ whole sum
The following distribution gives the prices of ice creams bought at a shop.'

Norman
Distributed
(GLT)

What is the probability that the shop sells morelthan $\$ 1000$ of ice cream to 400 customers? (make any assumptions you deem necessary)
\rightarrow Each COSTOMER BOYY ICE CREAM INDEPENDENTA

x	$\$ 1$	$\$ 2$	$\$ 10$
$p(x)$.5	.4	.1

$$
\begin{aligned}
E[x] & =1 \cdot .5+2 \cdot .4+10 \cdot .1 \\
& =.5+.8+1=2.3 \\
E\left[x^{2}\right] & =p \cdot .5+2^{2} \cdot 4+10^{2} \cdot .1 \\
& =.5+1.6+10=12.1 \\
\operatorname{Van}(x) & =E\left[x^{2}\right] \cdot E[x]^{2}=12.1-2.3^{2}=6.81
\end{aligned}
$$

$$
\left.\begin{array}{rl}
E\left[x_{0}+x_{1}+x_{2}+x_{3}+\ldots+x_{399}\right] & = \\
E\left[x_{0}\right]+E\left[x_{1}\right]+\ldots+E\left[x_{399}\right] & =400 E[x] \\
& =400.2 .3 \\
& =920 \\
\operatorname{VAR}\left(x_{0}+x_{1}+x_{2}+x_{3}+\ldots+x_{399}\right) \\
& =\operatorname{VAR}\left(x_{0}\right)+\operatorname{VAR}\left(x_{1}\right)+\ldots+\operatorname{VAR}\left(x_{399}\right)
\end{array}\right)=400-6.819 .
$$

$$
1-\operatorname{CDF}(1000)
$$

$$
\begin{aligned}
& E\left[x_{0}+x_{1}\right]=E\left[x_{0}\right]+E\left[x_{1}\right] \\
& \operatorname{VAR}\left(x_{0}+x_{1}\right)=\operatorname{VAR}\left(x_{0}\right)+\operatorname{VAR}\left(x_{1}\right) \\
& \text { INDEP }
\end{aligned}
$$

INJERSE OF CDF = PPF

$$
\begin{gathered}
\operatorname{Van}(o x)=c^{2} \operatorname{van}(x) \quad \operatorname{VAR}\left(x_{0}+x_{1}\right)=\operatorname{san}\left(x_{1}\right)+\operatorname{van}\left(a_{0}\right) \\
\phi \\
400 \times \neq x_{0}+X_{1}+\ldots+X_{399} \\
\mu
\end{gathered}
$$

ONE COSTOMER'S BILL $\times 400$
som of HOO INDEF

