Bayes' rule, conditional ind., Bayes Nets (pt. 1)

You are told that $correlation(x_1, x_2) = 0$. Which of the following might be

Pearson's Correlation Coefficient examples

ICA Question 1: Conditional Probabilities

You are given a gift. What is the probability that you were given a book?

You are given a gift by Felix. What is the probability

Giver	Gift 1	Gift 2
Felix		
Swati		
Camilla		
Parth		

ICA Question 2: Bayes Rule

You are given a gift at a mystery gift exchange. What is the probability that Felix was the gift bringer?

You are given a **book** at a mystery gift exchange. What is the probability that Felix was the gift

Bayes' rule

• Bayes' rule denotes the relationship between $P(A \mid B)$ and $P(B \mid A)$

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

- When calculating P(B) for the denominator, it's often useful to calculate this as the sum of $\sum P(B\,|\,A_i)P(A_i)$

Bayes' rule in pictures

• Say we'd like to know P(have covid|negative test) given that the false positive rate for our Super Official covid tests is 5% and our false negative rate for our Super Official covid tests is 20%. Further, we know that the current distribution of people with covid is 10% of the population.

Bayes' rule in pictures

• Say we'd like to know P(have covid|negative test) given that the false positive rate for our Super Official covid tests is **20**% and our false negative rate for our Super Official covid tests is **5**%. Further, we know that the current distribution of people with covid is 10% of the population.

What about P(no covid | positive test)?

Updated P(covid 1-): P((ovid)-)=P(-1covid)P(covid) P(-1 covid) P(covid) + P(-1 no covid) P(no covid) = .05*.1 = (.05*.1) + (.8*.9) P(uo(ovid1+)= .2 * .9 = .65 (.2+9)+(.95*.1) A Wow, that's not good for our test but maybe we don't care?

- So, in the real world, we often want to incorporate more information than one random variable.
 - BUT this often leads to *very* complex joint probability distributions

 Lo prob. of mult. variables
 - A Bayes Net (also known as a graphical model) is a way to encode conditional interdependencies and simplify the logic behind what's happening
- e.g. I want to compute P(illness | symptoms) or P(illness1,illness2,illness3| symptoms)

Conditional independence & the chain rule

- If we have multiple variables, the chain rule defines their joint probability $P(X_1, X_2, \dots, X_n) = P(X_1)P(X_2 | X_1)P(X_3 | X_1, X_2) \dots P(X_N | X_1, \dots, X_{N-1})$ P(Rain = True, Truefic = lots, Umbrella = True)

 • So, if we want to know P(Rain, Traffic, Umbrella), then we can calculate
- - P(Rain) * P(Traffic | Rain) * P(Umbrella | Traffic, Rain)
- If we assume conditional independence between the traffic and my umbrella, then this becomes
 - P(Rain) * P(Traffic | Rain) * P(Umbrella | Rain)

we'll look at examples that look mone like this next Thursday

- e.g. I want to compute P(illness | symptoms) or P(illness1,illness2,illness3| symptoms)
- Instead of looking to calculate $P(A \mid B)$ here, we really want to calculate $P(A \mid B, C)$ or $P(A, B \mid C, D)$ or even $P(A, B, C \mid D, E, F)$ (Or more)

$$\bullet \ \, \text{Remember, } P(A \,|\, B) = \frac{P(A,B)}{P(B)}$$

•
$$P(A, B, C | D, E, F) = \frac{P(A, B, C, D, E, F)}{P(D, E, F)}$$

(ond itional and.

P(A,BIC) = P(AIC) P(BIC)

LLD conditionally independent

ind.

P(A1B) - P(A)

if A + B are irdependent

- Notation:
- nodes: random variables
- arrows: dependency relationships

 I want to calculate the probability that I have covid based on whether or not I have a Sore Throat.

 ST_yes
 0.05
 0.95

 ST_no
 0.01
 0.99

C yes

C no

• Algebraically, what is the probability that I have covid?

joint prob of P(C,St)

 I want to calculate the probability that I have covid based on whether or not I have a Sore Throat.

	C_yes	C_no
ST_yes	0.05	0.95
ST_no	0.01	0.99

Algebraically, what is the probability that I have covid?

•
$$P(C_y) = \sum_{ST} P(C_y, ST) = P(C_y, ST_y) + P(C_y, ST_n) = P(C_y | ST_y) P(ST_y) + P(C_y | ST_n) P(ST_n)$$

 I want to calculate the probability that I have covid based on whether or not I have a Sore Throat.

	C_yes	C_no
ST_yes	0.05	0.95
ST_no	0.01	0.99

- Okay, are ST and C independent?
 - No, $P(C|ST) \neq P(C)!$

• (Spreadsheet screenshot)

А	В	С	D	Е	F	G
sore throat	p(st)	covid	sore throat	p(st, c)		
yes	es 0.2 yes		yes	0.01	<- B2 * .05	<- P(st) * P(c st)
no	0.8	yes	no	0.008	<- B3 * .01	
Sanity Check	1	no	yes	0.19		
		no	no	0.792		
			Sanity Check	1		

- Wait, why Bayes Nets???
 - We get power from Bayes Nets when we are modeling things with more complex relationships (more than two variables)

- Assumptions:
 - each node is conditionally independent of everything except its parents:

•
$$P(x_i | x_1, \dots, x_{i-1}) = P(x_i | parents(X_i))$$

P(A/B,(,D)

• I want to calculate the probability that I'll finish the Boston marathon.

S_7	S_8
0.6	0.4

	F_yes	F_no
W_h, S_7	0.1	0.9
W_h, S_8	0.6	0.4
W_w, S_7	0.7	0.3
W_w, S_8	0.8	0.2
W_c, S_7	0.5	0.5
W_c, S_8	0.6	0.4

updated 4/21/22

- In this graph, W and S are conditionally independent ,
- $P(W, S \mid F) = P(W \mid F)P(S \mid F)$

• $P(W|S,F) \neq P(W|F)$

• $P(S \mid W, F) \neq P(S \mid F)$

Loexample in lecture 23

Duhun either of these variables is conditioned on F, they be come linked

 we can calculate the probability of any one variable taking on a specific value by using the joint probability distribution and combining with our conditional independence assumptions

$$P(F) = \sum_{W,S} P(F, W, S) = 1$$

$$P(F_{yes}) = \sum_{W,S} P(F_{yes}, W, S)$$

$$P(F_{ylw}, S) = \sum_{W,S} P(F_{yes}, W, S)$$

• (Spreadsheet screenshot)

Α	В	С	D	Е	F	G	Н	1	J	К
Weather	P(w)	Speed	P(s)	Weather	Speed	P(w, s)	Finished	Weather	Speed	P(F, W, S)
hot	0.5	seven	0.6	hot	seven	0.3	yes	hot	seven	0.03
warm	0.3	eight	0.4	hot	eight	0.2	yes	hot	eight	0.12
cold	0.2	Sanity check	1	warm	seven	0.18	yes	warm	seven	0.126
Sanity check	1			warm	eight	0.12	yes	warm	eight	0.096
				cold	seven	0.12	yes	cold	seven	0.06
				cold	eight	0.08	yes	cold	eight	0.048
					Sanity check	1	no	hot	seven	0.27
							no	hot	eight	0.08
							no	warm	seven	0.054
							no	warm	eight	0.024
							no	cold	seven	0.06
							no	cold	eight	0.032
									Sanity check	1

ICA Question 3: Bayes Nets

Given the following Bayes Net, use a spreadsheet to calculate the probability Felix is not late (L_no).

Link to spreadsheet computations for these Bayes Nets!

https://bit.ly/sec1bayes

So, to algebraically compute $P(F_{yes}) = \sum_{W.S} P(F_{yes}, W, S)$, we need:

$$P(F_{yes}) = P(F_{yes}, W_h, S_7) + P(F_{yes}, W_h, S_8) + P(F_{yes}, W_w, S_7) + P(F_{yes}, W_w, S_8) + P(F_{yes}, W_c, S_7) + P(F_{yes}, W_c, S_8)$$

And for each individual term, we need:

•
$$P(F_{yes}, W_h, S_7) = P(F_{yes} | W_h, S_7) P(W_h, S_7)$$

More examples next Thursday!

Schedule

Turn in ICA 22 on Canvas (submit by 2pm!) - passcode is "thursday"

4/21: Updated to Bayes Nets part 2 (about 1 hr) & a mini project work day (about 40 min)

HW 9: (released 4/19) you have everything you need, we'll do more examples on 4/21

Mini-project: must email Felix to request an extension (by default no late passes)

Test 4: May 4th, 1 - 3pm, Snell Engineering 108

Mon	Tue	Wed	Thu	Fri	Sat	Sun
April 11th Lecture 21 - conditional probabilities, bayes		Felix OH Calendly	Felix OH Calendly Lecture 22 - conditional independence, bayes nets			HW 8 due @ 11:59pm
April 18th No lecture - Patriot's Day		Felix OH Calendly	Felix OH Calendly Lecture 23 - Bayes Nets, part 2, mini-project work			
April 25th Lecture 24 - presentations, review Mini-project due @ 11:45am		HW 9 due @ 11:59pm				

More recommended resources on these topics

- YouTube: 3Blue1Brown, Bayes theorem, the geometry of changing beliefs
- YouTube: 3Blue1Brown, The medical test paradox, and redesigning Bayes' Rule
- YouTube: Berkeley AI, Section 5: Probability, Bayes Nets
- UW CSE 473, Bayes' Nets: https://courses.cs.washington.edu/courses/cse473/19sp/slides/cse473sp19-BayesNets.pdf