Bayes' rule, conditional ind., Bayes Nets (pt. 1)

You are told that $\operatorname{correlation}\left(x_{1}, x_{2}\right)=0$. Which of the following might be underlying distributions of the data?

Pearson's Correlation Coefficient examples

ICA Question 1: Conditional Probabilities

ICA Question 2: Bayes Rule
You are given a gift at a mystery gift exchange. What is the probability that Felix was the gift bringer?

$$
P(\text { from }=\text { felix })=\frac{1}{4}=\frac{2 \text { felix gifts }}{8 \text { gifts }}
$$

You are given a book at a mystery gift exchange. What is the probability that Felix was the gift bringer?

$$
\begin{aligned}
& P(\text { From }=\text { Felix } \mid G=\text { book })=\frac{\# \text { Felix books }}{\# \text { total bots }} \\
& \frac{P(\text { book } \mid \text { Felix }) P(\text { Felix })}{1+\frac{1}{4}}=\frac{1}{5 / 8}
\end{aligned}
$$

Bayes' rule

- Bayes' rule denotes the relationship between $P(A \mid B)$ and $P(B \mid A)$
- $P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}$
- When calculating $P(B)$ for the denominator, it's often useful to calculate this as the sum of $\sum_{i} P\left(B \mid A_{i}\right) P\left(A_{i}\right)$

$$
\begin{aligned}
& \text { - (for the previous example that's } \sum_{\text {people }} P(\text { book } \mid \text { person }) P(\text { person }) \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& 1 * 1 / 4 \quad 1 / 2 * 1 / 4
\end{aligned}
$$

Bayes' rule in pictures

- Say wed like to know P (have covid|negative test) given that the false positive rate for our Super Official covid tests is 5% and our false negative rate for our Super Official covid tests is $\mathbf{2 0 \%}$. Further, we know that the current distribution of people with covid is 10% of the population.

$$
\leftrightarrow P(\text { covid })=.1
$$

$\rightarrow 90 \%$ of POP

$$
\frac{\text { negatives } .2 * .1}{(.2 * .1)+(.95 * .9)}=2.39 /
$$

Bayes' rule in pictures

- Say wed like to know P(have covid|negative test) given that the false positive rate for our Super Official covid tests is 20% and our false negative rate for our Super Official covid tests is 5%. Further, we know that the current distribution of people with covid is 10% of the population.

- What about P(no covid | positive test)?
updated $P($ covid $1-)$:

$$
\begin{aligned}
& P(\text { covid }-)=\frac{P(-1 \text { covid }) P(\text { covid })}{P(-1 \text { covid }) P(\text { covid })+P(-1 \text { nocovid })} \\
& =\frac{.05 * .1}{(.05 * .1)+(.8 * .9)}=.0069 \\
& P(\text { no covidlt })=\frac{.2 * .9}{(.2 * .9)+(.95 * .1)}=.65 \\
& \omega_{0} w \text {, that's }
\end{aligned}
$$

not good for our test, but maybe we don't care?

Bayes nets

- So, in the real world, we often want to incorporate more information than one random variable.
- BUT this often leads to very complex joint probability distributions Loprob. of mult. variables
- A Bayes Net (also known as a graphical model) is a way to encode conditional interdependencies and simplify the logic behind what's happening
- e.g. I want to compute $\underbrace{\text { P(illness | symptoms) or } \mathrm{P} \text { (illness1, illness2, illness3| }}$ symptoms)

Conditional independence \& the chain rule

- If we have multiple variables, the chain rule defines their joint probability $P\left(X_{1}, X_{2}, \ldots, X_{n}\right)=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}, X_{2}\right) \ldots P\left(X_{N} \mid X_{1}, \ldots, X_{N-1}\right)$ $P($ Rain $=$ True, Traffic $=$ lots, Umborella $=$ True $)$
- So, if we want to know P(Rain, Traffic, Umbrella), then we can calculate
- $P($ Rain $) * P($ Traffic \mid Rain $) * P($ Umbrella \mid Traffic, Rain $)$

- If we assume conditronal independence between the traffic and my umbrella, then this becomes
- $P($ Rain $) * P($ Traffic \mid Rain $) * P($ Umbrella \mid Rain $)$

Rain, Traffic, Umbrella, Street Width
(SW)
 computation should
include a term

$$
P(T(R, S \omega)
$$

$(R) \rightarrow 0$
will look at examples that look mane like this next Thursday

Bayes nets

- e.g. I want to compute P (illness | symptoms) or P(illness1, illness2, illness3| symptoms)
- Instead of looking to calculate $P(A \mid B)$ here, we really want to calculate $P(A \mid B, C)$ or $P(A, B \mid C, D)$ or even $P(A, B, C \mid D, E, F)$ (Or more)
- Remember, $P(A \mid B)=\frac{P(A, B)}{P(B)}$
. $P(A, B, C \mid D, E, F)=\frac{P(A, B, C, D, E, F)}{P(D, E, F)}$
conditional ind.

$$
P(A, B \mid C)=P(A \mid C) P(B \mid C)
$$

L_{\square} conditionally independent
ind.

$$
P(A \mid B)=P(A)
$$

if $A+B$ are independent

Bayes nets

- Notation:
- nodes: random variables
- arrows: dependency relationships

Bayes nets

- I want to calculate the probability that I have covid based on whether or not I have a Sore Throat.

Bayes nets

- I want to calculate the probability that I have covid based on whether or not I have a Sore Throat.

- Algebraically, what is the probability that I have covid?
- $P\left(C_{y}\right)=\sum_{S T} P\left(C_{y}, S T\right)=P\left(C_{y}, S T_{y}\right)+P\left(C_{y}, S T_{n}\right)=P\left(C_{y} \mid S T_{y}\right) P\left(S T_{y}\right)+P\left(C_{y} \mid S T_{n}\right) P\left(S T_{n}\right)$

Bayes nets

- I want to calculate the probability that I have covid based on whether or not I have a Sore Throat.

- Okay, are ST and C independent?
- No, $P(C \mid S T) \neq P(C)$!

Bayes nets

- (Spreadsheet screenshot)

A	B	C	D	E	F	G
sore throat	p(st)	covid	sore throat	p(st, c)		
yes	0.2	yes	yes	0.01	<- B2 * . 05	$<-\mathrm{P}(\mathrm{st})^{*} \mathrm{P}(\mathrm{c} \mid \mathrm{st})$
no	0.8	yes	no	0.008	<- B3 * . 01	
Sanity Check	1	no	yes	0.19		
		no	no	0.792		
			Sanity Check	1		

Bayes nets

- Wait, why Bayes Nets???
- We get power from Bayes Nets when we are modeling things with more complex relationships (more than two variables)

Bayes nets

- Assumptions:
- each node is conditionally independent of everything except its parents:
- $P\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right)=P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)$
$P(A \mid B, C, D)$

Bayes nets

- I want to calculate the probability that I'll finish the Boston marathon.

- In this graph, W and S are independent, and
- $P(W, S \mid F)=P(W \mid F) P(S \mid F)$

But!

- $P\left(W \mid \underline{S_{2}} F\right) \neq P(W \mid F)$
- $P(S \mid W, F) \neq P(S \mid F)$
\rightarrow example in lecture 23
\rightarrow when either of these variables
 is conditioned on F, they become linked

Bayes nets

- we can calculate the probability of any one variable taking on a specific value by using the joint probability distribution and combining with our conditional independence assumptions
$P(F)=\sum_{W, S} P(F, W, S)=1$
$P\left(F_{\text {yes }}\right)=\sum_{W, S} P\left(F_{y e s}, W, S\right)$
$P\left(F_{y} \mid \omega, \varsigma\right) P(\omega, \delta)$

Bayes nets

- (Spreadsheet screenshot)

A	B	c	D	E	F	G	H	1	J	K
Weather	$\mathrm{P}(\mathrm{w})$	Speed	$\mathrm{P}(\mathrm{s})$	Weather	Speed	$\mathrm{P}(\mathrm{w}, \mathrm{s})$	Finished	Weather	Speed	$\mathrm{P}(\mathrm{F}, \mathrm{W}, \mathrm{S})$
hot	0.5	seven	0.6	hot	seven	0.3	yes	hot	seven	0.03
warm	0.3	eight	0.4	hot	eight	0.2	yes	hot	eight	0.12
cold	0.2	Sanity check	1	warm	seven	0.18	yes	warm	seven	0.126
Sanity check	1			warm	eight	0.12	yes	warm	eight	0.096
				cold	seven	0.12	yes	cold	seven	0.06
				cold	eight	0.08	yes	cold	eight	0.048
					Sanity check	1	no	hot	seven	0.27
							no	hot	eight	0.08
							no	warm	seven	0.054
							no	warm	eight	0.024
							no	cold	seven	0.06
							no	cold	eight	0.032
									Sanity check	1

ICA Question 3: Bayes Nets

Given the following Bayes Net, use a spreadsheet to calculate the probability Felix is not late (L_no).

Link to spreadsheet computations for these Bayes Nets!

- https://bit.ly/sec1bayes

Bayes nets

. So, to algebraically compute $P\left(F_{y e s}\right)=\sum_{W, S} P\left(F_{y e s}, W, S\right)$, we need:

- $P\left(F_{\text {yes }}\right)=P\left(F_{\text {yes }}, W_{h}, S_{7}\right)+P\left(F_{\text {yes }}, W_{h}, S_{8}\right)+P\left(F_{\text {yes }}, W_{w}, S_{7}\right)+P\left(F_{\text {yes }}, W_{w}, S_{8}\right)+P\left(F_{\text {yes }}, W_{c}, S_{7}\right)+P\left(F_{\text {yes }}, W_{c}, S_{8}\right)$
- And for each individual term, we need:
- $P\left(F_{\text {yes }}, W_{h}, S_{7}\right)=P\left(F_{\text {yes }} \mid W_{h}, S_{7}\right) P\left(W_{h}, S_{7}\right)$

Bayes nets

- More examples next Thursday!

Schedule

Turn in ICA 22 on Canvas (submit by 2pm!) - passcode is "thursday"
4/21: Updated to Bayes Nets part 2 (about 1 hr) \& a mini project work day (about 40 min)
HW 9: (released 4/19) you have everything you need, we'll do more examples on 4/21
Mini-project: must email Felix to request an extension (by default no late passes)
Test 4: May 4th, 1 - 3pm, Snell Engineering 108

Mon	Tue	Wed	Thu	Fri	Sat	Sun
April 11th Lecture 21 - conditional probabilities, bayes	Felix OH Calendly	Felix OH Calendly	Felix OH Calendly Lecture 22 - conditional independence, bayes nets			HW 8 due @ 11:59pm
April 18th No lecture - Patriot's Day	Felix OH Calendly	Felix OH Calendly	Felix OH Calendly Lecture 23 - Bayes Nets, part 2, mini-project work			
April 25th Lecture 24 - presentations, review Mini-project due @ 11:45am		HW 9 due @ 11:59pm				

More recommended resources on these topics

- YouTube: 3Blue1Brown, Bayes theorem, the geometry of changing beliefs
- YouTube: 3Blue1Brown, The medical test paradox, and redesigning Bayes' Rule
- YouTube: Berkeley AI, Section 5: Probability, Bayes Nets
- UW CSE 473, Bayes' Nets: https://courses.cs.washington.edu/courses/ cse473/19sp/slides/cse473sp19-BayesNets.pdf

