۰	CS281	0	Day	18

Admin:

HW6 released today (due date Mar 22 @ 11:59 PM, no late days accepted)
prob / stats calculator has new estimators / bias material from today
thank you for wearing masks

- What is a biased estimator?

Content:

Binomial / Poisson Assumptions (HW6 practice)

Estimators

Observations vs Ground Truth

Observations vs Ground Truth

Bessel's correction.

- an unbiased way to estimate variance

(ZEAL WORLD		WATH MODEL
	ASSUME ASSUME	
	· · · · · · · · · · · · · · · · · · ·	NE COMPUTE?

Today's skills:

- Today's skills:
 interpret / evaluate model assumptions in the context of a problem - estimate model parameters
- Poisson:

lambda: the "rate" at which events occur

- Binomial .
 - n: number of trials
 - . p: probability of success of each trial

Modeling with Binomial Distribution	Applications
Binomial: How many "successes" occur in N total	Application: A basketball player will take 100 free throws next season, how many do they make?
binary trials?	Model:
Parameters: n=number of trials p=prob of each trial's success	Binomial n=100 p=average free throws from this season
Assumes:	Assumption violations:
 output of each trial is binary outcome of every two trials is independent each trial is "identically distributed" 	2. emotions high / low after a make / miss impacts chance of next shot (independence)
- has the same prob of success	
· · · · · · · · · · · · · · · · · · ·	3. hard foul will change prob of free throw (but not all fouls are hard)
	3. context of game change prob success

Modelling with Poisson Appli							
Poisson: hour							
How many events occur in a given							
time window?							
Parameters: Mode							
lambda = "rate" of how many events lamb	lambda = average of how many customers walked						
typically occur in the time window into s							
Assumes: Assumes:							
1. Occurance of one event doesn't	·						
impact occurance of future events 2. the	ere are busier times for the store than others						
2. Rate that events are expected							
to occur is constant							

The Poisson Rate Parameter scales linearly

lf

the number of car accidents a day in all of Boston is poisson distributed with lambda = 24

then...

the number of car accidents an hour in all of Boston is Poisson distributed with lambda = 1

ICA₁

The following table gives the number of groups entering a store each day:

Mon: 32 Tues: 40 Weds: 20 Thurs: 42 Fri: 41 Sat: 102 Sun 103

- 1. Assuming the store is open 8 hours a day, build a Poisson Distribution (estimate lambda) over the number of groups entering each hour.
- 2. Assuming your model, compute the probability that exactly 20 groups enter the store in an hour
- 3. Does the data above seem consistent with the Poisson assumptions?
- -Rate that events are expected to occur is constant
- -Occurance of one event doesn't impact occurance of future events

YROB K EVENTS

Mon: 32 Tues: 40 Weds: 20 Thurs: 42 Fri: 41 Sat: 102 Sun 103

201

7.8 Hosas

0						
۰	Ţ	hin	k	alc	ne	3

. - one 3 pound fish .

. . . . - one 5 pound fish .

Do you, with certainty, know the expected value of the weights of fish in the pond you'd catch?

You observe some fish in a new pond:

Observations vs Ground Truth Observed data:

Collected in an experiment

X=3 X=7 X=5

LET F BE RANDOM VARIABLE

state

FISH WEIGHT IN POND

Ground Truth data:

- rarely known

Describes the precise, absolutely true

Estimators

An Estimator is a function of observations which outputs an estimate of some ground truth variable.

$$f_{1}=3$$
 $f_{3}=7$ $f_{3}=5$ Fish WEIGHT IN POND
 $f_{1}=3$ $f_{5}=7$ $f_{5}=5$ $f_{5}=7$ $f_{$

E[x] = Z x: P(xi) "SAMPLE MEAN" 15 AN ESTIMATOR FOR E[X] EAN OBSERVATION WOER GETS LOWERCASE W INDEX

LIGHTENING ICA (IN YOUR HEAD)

YOU OBSERVE FISH WEIGHTS

X1=10 X=30 X5=30

- ESTIMATE E[x] W/ SAMPLE MEAN

-> ARE YOU CERTAIN THIS ELTIMATE IS EXACTLY EQUAL TO E[X]? ESTIMATING EXPELTED VALUE

$$\sum_{X=1}^{\infty} \sum_{X=1}^{\infty} \sum_{X=1}^{\infty} \sum_{X=1}^{\infty} P(x)$$
Sample MEAN

$$\frac{\lambda_{3}}{\sigma_{\text{BiAS}}} = \frac{1}{\sqrt{2}} \left(\times, -\times \right)$$

X0=6 X1=3 X3=4 X4=5

$$X = \frac{1}{5} = \frac{2}{5} \times 1 = 6 + 3 + 5 + 4 + 5 = 33 = 4.6$$

1 X₀ = 6

x, = 3 x = 5 x = 4 x = 5

$$\frac{73}{5} = \frac{1}{5} = \frac{1}{5} \left((6-4.6) + (3$$

$$E[x] = \underbrace{Z}_{K:P(xi)} = \frac{1}{6} \cdot \frac{1}{4} \cdot \frac{1}{6} \cdot \frac{3}{4} \cdot \frac{1}{6} \cdot \frac{3}{4} \cdot \frac{1}{6} \cdot \frac{5}{4} \cdot \frac{1}{6} \cdot \frac{5}{6} \cdot \frac{1}{6} \cdot$$

REMEMBER:

BESSEL'S MOTIVATION (PYTHON)

UNBIASED ESTIMATORS

An estimator is unbiased if its expected value equals the ground truth target.

Is the sample mean an unbiased estimator? ... yes, let's prove it:

$$E\left[\frac{1}{N} \leq X_{1}\right] = \frac{1}{N} \left(E\left[\frac{1}{N}\right] + E\left[\frac{1}{N}\right] + \dots + E\left[\frac{1}{N}\right]\right)$$

$$= \frac{1}{N} \left(E\left[\frac{1}{N}\right] + E\left[\frac{1}{N}\right] + \dots + E\left[\frac{1}{N}\right]\right)$$

$$= E\left[\frac{1}{N}\right]$$

OBESSEL = N-1
$$\leq (Xi - X)$$
 15 UNBIASED

(WE WON'T PROVE IT...

BOT LET'S REST IN PYTHON)

BESSEL'S CORRECTION: MOTIVATION

Bessel Motivation 2:

If we have a single observation, what can we say about variance?

$$\int_{0}^{3} \int_{0}^{2} \left(x_{i} - x_{i} \right)^{2} = \frac{1}{1} \cdot \left(4 - 4 \right) = 0$$

IC/	4 3	3:	O r	ne	m	or	e t	trip	tc) th	'nе	p	on	ď	۰	

The following are weights, in pounds, of fish you observe in a pond: 3, 5, 7, 1, 9, 8, 2

Let X be a Random Variable representing the weight of a fish in this pond

2 Give an unbiased estimate of Var(v)

1. Give an unbiased estimate of E[x]

2. Give an unbiased estimate of Var(x)

3. Suppose a fish pops his head above the surface and claims, "Our average weight down here is 6 pounds". Incorporate his information into your unbisaed estimate of Var(x)

$$0 = \frac{1}{N} = \frac{1}{N-1} = \frac{3 + 5 + 7 + 1 + 9 + 8 + 3}{7} = 5$$

$$0 = \frac{1}{N-1} = \frac{1}{N-1$$

 $= \frac{1}{7-1} \left((3-5)^3 + (5-5)^3 + (7-5)^3 + (1-5)^3 + (6-5)^3 + (6-5)^3 + (6-5)^3 + (6-5)^3 \right)$

$$=\frac{1}{N} \leq (x_i - \epsilon_{i}x_j)^{\alpha}$$