CS2810 Day 15

Admin:
HW6 released today (due date Mar 22 @ 11:59.PM, no late days accepted) prob / stats calculator has new estimators / bias material from today thank you for wearing masks

Content:
Binomial /Poisson Assumptions (HW6 practice)

Observations vs Ground Truth

Estimators

- What is a biased estimator?

Bessel's correction

- an unbiased way to estimate variance

REAC world

$\xrightarrow[\text { Assome }]{ }$

CAN
WE compute?
Do we trust Simple
Today's skills:

- interpret / evaluate model assumptions in the context of a problem
- estimate model parameters
- Poisson:
lambda: the "rate" at which events occur
Binomial
n : number of trials
p: probability of success of each trial

Modeling with Binomial Distribution

Binomial:
How many "successes" occur in N total binary trials?

Parameters:
$\mathrm{n}=$ number of trials
$\mathrm{p}=\mathrm{prob}$ of each trial's success
Assumes:

1. output of each trial is binary
2. outcome of every two trials is independent
3. each trial is "identically distributed"

- has the same prob of success

Application:
A basketball player will take 100 free throws next season, how many do they make?

Model:
Binomial
$\mathrm{n}=100$
$\mathrm{p}=$ average free throws from this season
Assumption violations:
2. emotions high / Iow after a make / miss impacts chance of next shot (independence)
3. hard foul will change prob of free throw (but not all fouls are hard)
3. context of game change prob success

Modelling with Poisson
Poisson:
How many events occur in a given time window?

Parameters:
lambda = "rate" of how many events typically occur in the time window.

Assumes:

1. Occurance of one event doesn't impact occurance of future events 2. Rate that events are expected to occur is constant

Application:
How many groups will walk into store in any
hour they're open during the week?

Model:

lambda $=$ average of how many customers walked into store per hour during the previous year

Assumption violations:
2. there are busier times for the store than others

1. if store is busy more / less people might come

The Poisson Rate Parameter scales linearly

If

the number of car accidents a day in all of Boston is poisson distributed with lambda $=24$
then...
the number of car accidents an hour in all of Boston is Poisson distributed with lambda $=1$

The following table gives the number of groups entering a store each day:
Mon: 32 Tues: 40 Weds: 20 Thurs: 42 Fri: 41 Sat: 102 Sun 103

1. Assuming the store is open 8 hours a day, build a Poisson Distribution (estimate lambda) over the number of groups entering each hour.
2. Assuming your model, compute the probability that exactly 20 groups enter the store in an hour
3. Does the data above seem consistent with the Poisson assumptions? -Rate that events are expected to occur is constant
-Occurance of one event doesn't impact occurance of future events

Mon: 32 Tues: 40 Weds: 20 Thurs: 42 Fri: 41 Sat: 102 Sun 103

$$
32+40+20+42+41+102+103=\frac{380}{7.8 \text { Ground }}
$$

(D) Poo do Groves ENTER an $H n$:

$$
\frac{\lambda^{k} e^{-\lambda}}{k!}=\frac{6.78^{\circ 0} e^{-6.78}}{20!} \approx \underset{\text { ABNVSO }}{\operatorname{susT}}
$$

$$
\cong 6.78 \text { GRosS } / H_{00 R}
$$

Think alone:
You observe some fish in a new pond:

- one 3 pound fish
- one 5 pound fish

Do you, with certainty, know the expected value of the weights of fish in the pond you'd catch?

Observed data:
Collected in an experiment

Fisc wrote

$$
x_{1}=3 \quad x_{0}=7 \quad x_{3}=5
$$

Ground Truth data:
Describes the precise, absolutely true state

- rarely known

LET f be Random Variable FISH WElT in POND

$$
E[F]=?
$$

Estimators
An Estimator is a function of observations which outputs an estimate of some ground truth variable.

Figs went

$$
\begin{aligned}
& f_{1}=3 \quad f=7 \quad f_{3}=5 \\
& \frac{f_{1}+f_{2}+f_{3}}{N}=\frac{3+7+5}{3}=5
\end{aligned}
$$

Let f be Random Daman Fish weiout in Pond

$$
E[F]=?
$$

"Sample Mean" "ranarions. $\longrightarrow \bar{X}=\frac{1}{N} \sum_{i} x_{i}$ is an Escomaror for $E[x]$

て
rorac

$$
E[x]=\sum_{i=1} x_{i} P\left(x_{i}\right)
$$

ooscravations

Enal obsenvation
Same notation Gers cowencate a/ WDEX for ourcomes of EXPERIMENT

LIGHTENING ICA (in YOOR MEAO)
You obserne fist we.onts

$$
x_{1}=10 \quad x_{3}=20 \quad x_{3}=30
$$

\rightarrow Estimate $\in[x]$ w/ Sample Mean
\rightarrow Ale you certana This Esrimate is Enacicy Eavac to $E[x]$?

Estimaring Evocured Vacue
Suppose you obsenve fis4 wevurs

$$
\begin{aligned}
& x_{1}=3 \quad x_{3}=5 \quad x_{3}=4 \\
& x_{i} \text { is } \\
& \underset{\substack{\text { Samorew } \\
\text { Mem }}}{ } \bar{x}=\frac{1}{N} \sum_{i} x_{i} \xrightarrow{\text { Ebramares }} \quad \in[x]=\sum_{i} x_{i} P\left(x_{i}\right) \\
& x_{i} \text { is } \\
& \text { OBSERVarion }
\end{aligned}
$$

Estimaring Vaninace
Suppose you obsenve fisy wevurs

$$
\begin{aligned}
& x_{1}=3 \quad x_{3}=5 \quad x_{y}=4 \\
& \hat{\sigma}_{\text {Bins }}=\frac{1}{N} \sum_{i}\left(x_{i}-\bar{x}\right)^{2} \xrightarrow{\text { Esrimares }} \sigma^{2}=\operatorname{var}(x)=\sum_{i}\left(x_{i}-E[x)^{2} P\left(x_{i}\right)\right.
\end{aligned}
$$

ICA D
Compore SAmple NEAN + "Samme Uanicance" of $N=5$ Six-SideD DiE Roč>

$$
\begin{aligned}
& x_{0}=6 \quad x_{1}=3 \quad x_{3}-5 \quad x_{3}=4 \quad x_{4}=5 \\
& \hat{\sigma}_{\text {Bn }}=\frac{1}{N} \sum_{i}\left(x_{1}-\bar{x}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& x_{0}=6 \quad x_{1}=3 \quad x_{3}=5 \quad x_{3}-4 \quad x_{4}=5 \\
& \bar{x}=\frac{1}{N} \sum_{i} x_{i}=\frac{6+3+5+4+5}{5}=\frac{23}{5}=4.6 \\
& \hat{\sigma}_{\text {Bin }}=\frac{1}{N} \sum_{i}\left(x_{i}-\bar{x}\right)^{2}=\frac{1}{5}\left(\begin{array}{r}
(6-4.6)^{2}+(3-4.6)^{2}+ \\
(5-4.6)^{2}+(4-4.6)^{2}+ \\
\left.(5-4.6)^{2}\right)
\end{array}\right)=1.04
\end{aligned}
$$

RemEMBER:
If x is far Six sided Die rock

$$
\begin{aligned}
& E[x]=\sum_{1} x_{i} P\left(x_{i}\right)=1 / 6 \cdot 1+1 / 6 \cdot 2-1 / 6 \cdot 3+1 / 6 \cdot 4+1 / 6 \cdot 5 \cdot 1 / 6 \cdot 6 \\
&=3.5 \\
& \begin{aligned}
E\left[x^{2}\right]=\sum_{i} x_{i}^{2} P\left(x_{i}\right) & =1 / 6 \cdot 1^{2}+1 / 6 \cdot 2^{2}-1 / 6 \cdot 3^{2}+1 / 6 \cdot 4^{2}+1 / 6 \cdot 5 \cdot 1 / 6 \cdot 6^{2} \\
& =1 / 61+4+9+16+25+36 \\
& =91 / 6
\end{aligned} \\
& \operatorname{VAR}(x)=E\left[x^{2}\right]-E[x]^{2}=\frac{91}{6}-3.5^{2}=2.9167
\end{aligned}
$$

Bessecis Motivation (PYT-1مN)

UNBIASED ESTMATORS
An estimator is unbiased if is expected value equals the ground truth target. Is the sample mean an unbiased estimator? ... yes, let's prove it:

$$
\begin{aligned}
E[\bar{x}]-E\left[\frac{1}{N} \sum_{i} x_{i}\right] & =\frac{1}{N}\left(E\left[x_{0}\right]+E\left[x_{i}\right]+\ldots+E\left[x_{n-}\right]\right) \\
& =\frac{1}{N}(E[x]+E[x]+\ldots+E[x]) \\
& =E[x]
\end{aligned}
$$

An unbiased estimator of variance (Bessel's Correction)

Claim:
$\hat{O}_{\text {BIAS }}=\frac{1}{N} \sum_{i}\left(x_{i}-\frac{x^{x}}{}\right)^{2}$ is BiASED (Too sinACC)

$$
\hat{O}_{B E S E L}=\frac{1}{N-1}<_{i}\left(x_{i}-\bar{x}\right)^{2} \text { is } \text { UNBIASED }
$$

(WE WON'T Prove it... Bor Lei's zest in Pyrion)

Bensel's Conrection: Motivation
Way is $\hat{O}_{\text {BIAS }}^{2}=\frac{1}{N} \sum_{i}\left(x_{i}-\bar{x}\right)^{2} \begin{array}{r}\text { ofren } \operatorname{sman} E R \\ \text { Tand } \operatorname{van}(x)\end{array}$?

\bar{x} is As Close AS POSSible To AiL X_{i}
\bar{x} Minimires $\sum_{i}\left(x_{i}-\bar{x}\right)^{0}$

Bessel Motivation 2:
If we have a single observation, what can we say about variance?

$$
\sigma_{B, A D}^{\partial}=\frac{1}{N} \sum_{i}\left(x_{i}-\bar{x}\right)^{2}=\frac{1}{1} \cdot(4-4)^{2}=0
$$

ICA 3: One more trip to the pond
The following are weights; in pounds; of fish you observe in a pond:
$3,5,7,1,9,8,2$
Let X be a Random Variable representing the weight of a fish in this pond

1. Give an unbiased estimate of $\mathrm{E}[\mathrm{x}]$
2. Give an unbiased estimate of $\operatorname{Var}(\mathrm{x})$
3. Suppose a fish pops his head above the surface and claims, "Our average weight down here is 6 pounds". Incorporate his information into your unbisaed estimate of $\operatorname{Var}(\mathrm{x})$.

$$
3571982
$$

(1) $\bar{x}=\frac{1}{N} \sum_{1} x_{i}=\frac{3+5+7+1+9+8+2}{7}=5$
(D)

$$
\begin{aligned}
\hat{\sigma}_{B \text { Concl }}^{2} & =\frac{1}{N-1} \sum_{i}\left(x_{i}-\bar{x}\right)^{0} \\
& =\frac{1}{2-1}\left((3-5)^{2}+(5-5)^{2}+(7-5)^{2}+(1-5)^{2}\right. \\
& \left.+(9-5)^{2}+(8-5)^{2}+(2-5)^{2}\right) \\
& =9^{2 / 3}
\end{aligned}
$$

$$
\hat{O}^{2}=\frac{1}{N} \sum_{i}\left(x_{i}-e_{0}\right)^{0}
$$

