How ane we doing today?
Well start w/ reviewing your Lee 11 I $\left(A_{5}{ }^{\prime \prime}\right.$

Admin At 10 am: your Test 1 was 67% graded \rightarrow grades to you all by Monday

- For my ICAs for my lectures, we are moving to the following format:
- Every lecture, you will answer *the same* three questions:

1. What did you learn from this lecture?
2. What are you confused about?
3. (a question -about either an ICA or a homework problem)

- I will stop lecture 10 minutes early for you to do this. You are expected to do this during class time.
- Only turn this in on Canvas

Admin

- You may assume that there will be no lecture content on test days
- You may assume that there will be no asynchronous lecture content for Patriot's Day (this is the last Monday holiday this semester) -> we will have 1 fewer ICA than Prof. Higger's sections
- Because you should all be watching Molly Seidel in the marathon
- Plan to be here in person for the following days before spring break:
- Thursday, March 3rd (Test 2)
- Thursday, March 10th (Mini Project Day 1)

line of best fit, eigenvalues/ vectors, Markov Chains review

Lo HW 4

Line of Best Fit - Lec 11 IDA $\quad \vec{p}=\frac{b^{\top} a}{a^{\top} a} a$

- Find the line of best fit for the below scatter points. (Using $p=m a$)

$$
y=m x
$$

Line of Best Fit - Lec 11 ICA

- Find the line of best fit for the below scatter points. (Using $p=m a$)

Line of Best Fit - Equation Summaries

- To find a polynomial of best fit, you'll be solving for: $\vec{p}=\underline{A} \vec{m}$, using the equation $\vec{p}=A\left(A^{T} A\right)^{-1} A^{T} b$ (since you know the values of b and a)
- Where b is the vector of " y values"; A is the matrix of " x values" raised to the power of the "current" coefficient; m is the vector of "slopes"

$$
\begin{aligned}
{\left[\begin{array}{l}
3 \\
4 \\
4
\end{array}\right] } & =\left[\begin{array}{c}
-1^{0} \\
1^{0} \\
2^{0}
\end{array}\right] m_{0}+\left[\begin{array}{c}
-1^{1} \\
1^{1} \\
2^{1}
\end{array}\right] m_{1}+\left[\begin{array}{c}
-1^{2} \\
1^{2} \\
2^{2}
\end{array}\right] m_{2}+\ldots \\
b & =m_{0}^{0}+m_{1} a^{1}
\end{aligned}
$$

$$
b=m_{0} a^{0}+m_{1} a^{1}+m_{2} a^{2}
$$

Eigenvalues/vectors - Lec 11 ICA

- What is an eigenvector?
L_{D} a vector that for a given transformation g doesu't move offits own span
- What is an eigenvalue?

Lo how much eigenvector scales

$$
\begin{aligned}
& \text { - Find the eigenvalues/vectors for the given matrix: } \quad A=\left[\begin{array}{cc}
-1 & 3 \\
0 & 2
\end{array}\right] \\
& \left.\qquad \begin{array}{rl}
A \vec{V}= & \lambda \vec{v} \\
& \begin{array}{l}
\text { eigen vectors }
\end{array} \\
& {[A}
\end{array}\right]\left[\begin{array}{l}
v
\end{array}\right]=\left[\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right]\left[\begin{array}{l}
v \\
\text { eigen value }
\end{array}\right]
\end{aligned}
$$

Eigenvalues/vectors - Lec 11 ICA

$$
\begin{aligned}
& A \vec{v}=\lambda \vec{v} \\
& A=\left[\begin{array}{cc}
-1 & 3 \\
0 & 2
\end{array}\right] \\
& A \vec{v}-\lambda \vec{v}=0 \\
& \lambda=-1,2 \\
& (A-\lambda I), \vec{v}=0 \\
& \rightarrow \text { to be } 0 \rightarrow \operatorname{det}(A-\lambda I)=0 \\
& \operatorname{det}\left(\left[\begin{array}{cc}
-1-\lambda & 3 \\
0 & 2-\lambda
\end{array}\right]\right)=0 \begin{array}{l}
(-1-\lambda)(2-\lambda)-(3)(0)=0 \\
(-1-\lambda)(2-\lambda)=0
\end{array}
\end{aligned}
$$

What's going on w/ Eigen vectors + determinants of zero? (added after lecture)

- the only way for a matrix a non-zero vector to be 0 is for the determinant of the matrix to be 0

ID this means that the transformation $w /$ this matrix "squishes into lower dimension space

$$
A=\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right] \quad \operatorname{det}(A-I \lambda)=0
$$

- noticethat we have an eigen value associated w/ each basis vector

$$
L_{D} \lambda=2,1
$$

- when we ask for $\operatorname{det}(A-I 2)$, we are essentially "reducing out" the basis vector associated w/ this eigen value:

$$
\left[\begin{array}{ccc}
2-2 & 0 \\
0 & 1 & -2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] x+\left[\begin{array}{c}
0 \\
-1
\end{array}\right] y=\left[\begin{array}{c}
0 \\
0
\end{array}\right] \rightarrow \text { tells }
$$

an eigen vector

Eigenvalues/vectors - Lec 11 ICA

$$
\begin{aligned}
& \text { - Find the eigenvectors for the given matrix: } \\
& \begin{array}{l}
\text { Find the eigenvector } \\
\lambda=-1,2
\end{array} \\
& (A-I \lambda) \vec{v}=0 \\
& A=\left[\begin{array}{cc}
-1 & 3 \\
0 & 2
\end{array}\right] \\
& \underbrace{\left[\begin{array}{ccc}
-1 & -1 & 3 \\
0 & 2-1
\end{array}\right]}_{A-I \lambda}\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]\left[\begin{array}{l}
\text { eigen vector (s): } \\
\text { anything on the } \\
x \text { axis }
\end{array}\right. \\
& {\left[\begin{array}{ll}
0 & 3 \\
0 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \quad\left[\begin{array}{l}
0 \\
0
\end{array}\right] x+\left[\begin{array}{l}
3 \\
3
\end{array}\right] y=\left[\begin{array}{l}
0 \\
0
\end{array}\right]}
\end{aligned}
$$

Eigenvalues/vectors - Lee 11 IDA Added after lecture

$$
\begin{aligned}
& \text { - Find the eigenvectors for the given matrix: } \\
& \lambda=2 \\
& {\left[\begin{array}{cc}
-1-2 & 3 \\
0 & 2-2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \\
& A=\left[\begin{array}{cc}
-1 & 3 \\
0 & 2
\end{array}\right] \\
& \text { Eigen vectors: } \\
& {\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\text { all scaled versions }} \\
& {\left[\begin{array}{cc}
-3 & 3 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \\
& -3 x+3 y=0 \rightarrow-x+y=0 \rightarrow x=y
\end{aligned}
$$

Eigenvalues/vectors - Lec 11 ICA

- For HW 4-you'll need to find the determinant of a 3×3 matrix. This is the equation:
$\operatorname{det}\left(\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]\right)=a^{*} \operatorname{det}\left(\left[\begin{array}{ll}e & f \\ h & i\end{array}\right]\right)-b^{*} \operatorname{det}\left(\left[\begin{array}{ll}d & f \\ g & i\end{array}\right]\right)+c^{*} \operatorname{det}\left(\left[\begin{array}{ll}d & e \\ g & h\end{array}\right]\right)$
- (Feel free to look up examples online/in your textbooks too :D)

Markov Chains - Lec 11 ICA

Markov Chains - Lee 11 ICA

- At time 3: \qquad $A A A x=x^{3}$

- are covid cases increasing? ${ }^{0.14} \rightarrow$ yes!

Markov Chains - Lec 11 ICA

- For these systems, there is a notion of a "steady state". If we find the vector associated with eigenvalue 1, this translates to the "steady state"

```
2 values, vectors = np.linalg.eig(A)
3 print(values)
4 \text { print(vectors[:, 0]) \# first eigen vector}
5 print(vectors[:, 1]) # second eigen vector
```

```
[0.84 1. ]
[-0.70710678 0.70710678]
[-0.14142136 -0.98994949]
```

```
1 # steady state
2 print (A @ vectors[:, 1])
3 print (A @ A @ vectors[:, 1])
4 print (A @ A @ A @ vectors[:, 1])
```


[-0.14142136 -0.98994949]
[-0.14142136 -0.98994949]
[-0.14142136 -0.98994949]

Markov Chains - Lec 11 ICA

- How can we make these numbers make more sense? (We don't have negative fractional people, last I checked)

```
2 values, vectors = np.linalg.eig(A)
3 print(values)
4 \text { print(vectors[:, 0]) \# first eigen vector}
5 \text { print(vectors[:, 1]) \# second eigen vector}
```

$\left.\begin{array}{lr}{\left[\begin{array}{ll}0.84 & 1 .\end{array}\right]} & \\ {[-0.70710678} & 0.70710678\end{array}\right]$

$12: 36$
break:12:40 bstretch ${ }_{\square}$ compane w/ neighbors
Lore-set yourselines a bit

Felix reminders:
\leftrightarrow add $2^{\text {nd }}$ eigenvector math
Ls explicit example of why $\operatorname{det}(\omega)=0$ makes eigenvectors happen

Random Variables

- A random variable is a variable whose value is determined by a probability distribution.
- Examples!

$$
L_{0} \text { a die }\{1 / 6, \ldots 1 / 6\}
$$

L_{D} the weather tomorrow: $\left\{\right.$ snow: $1 / 2$, sleet: $\frac{1}{4}$, $f \circ g: 1 / 4\}$
Lo deck of cards

Random Variables

- Random variables are normally written with capital letters: X, Y, Z

$$
X=\text { out cone of rolling a 6-sideddie }
$$

Expected Value

- A random variable is a variable whose value is determined by a probability distribution.
- Random variables have an expected value. (written as: $E[X]$)
- When I roll a 6-sided die, what value do I expect to see?

$$
5,3,2,1,3 \ldots
$$

Expected Value

- A random variable is a variable whose value is determined by a probability distribution.
- Random variables have an expected value. This corresponds to the average value I expect given infinite trials. (written as $E[X]$)
- When I roll a 6-sided die from now until eternity, what average value do I expect to see?

$$
\begin{aligned}
& 1 / 6(1)+1 / 6(2)+1 / 6(3)+1 / 6(4)+1 / 6(5)+1 / 6(6) \\
& \frac{1+2+\ldots+6}{6}=3.5
\end{aligned}
$$

Expected Value

- The expected value equation is, formally: $E[X]=\sum_{x} P(X=x)+\boldsymbol{x}$

little x is a specific outcome

Expected Value - ICA Question 1

If a random variable, X, is a 5 -sided die, what is the expected value? $(E[X])$

$$
E[x]=3
$$

... and if a trickster erased all odd numbers from the die? (making these sides blank instead) $1,3,5 \rightarrow 0$

$$
\frac{0+2+0+4+0}{5}=\frac{6}{5}
$$

Variance

- A random variable is a variable whose value is determined by a probability distribution.
- Random variables have a variance. This is a measurement of the average distance from the expected value each individual trial will be.
- When I roll a 6-sided die, how far from the expected value do I think that it will be?

$$
\begin{aligned}
& \frac{1}{6}(1-3.5)^{2}+\frac{1}{6}(2-3.5)^{2}+\ldots .+\frac{1}{6}(6-3.5)^{2} \\
& \text { "distance" } 2.92
\end{aligned}
$$

variance: 2.92

Variance \cdot std Lev is $\sqrt{\operatorname{Var}(x)}$

- The variance equation is, formally: $E\left[(x-E[X])^{2}\right]$
- Alternatively, we can write this as: $\operatorname{Var}(X)=\sum_{x} P(X=x) *(x-E[X])^{2}$
- Felix comes to you with a coin that has their favorite numbers on each side: 97 and -40. What is the variance?

$$
\begin{aligned}
E[X] & =\frac{1}{2}(97)+\frac{1}{2}(-40)=\frac{57}{2}=28.5 \\
\operatorname{Var}(x) & =\frac{1}{2}(97-28.5)^{2}+\frac{1}{2}(-40-28.5)^{2}=\text { the }
\end{aligned}
$$

Expected Value - ICA Question 2
If a random variable, X, is a 5 -sided die, what is the variance? $(\operatorname{Var}(X))$

$$
\operatorname{Var}(X)=2
$$

What can you do to the die to reduce the variance but maintain $E[X]$?
4 make all sides $=3, E[X]=3 \operatorname{Var}(X)=0$

$$
\rightarrow 5 \rightarrow 4,1 \rightarrow 2
$$

Linearity of Expectation

- Linearity of expectation says that given multiple random variables, we can sum their expected values to get an overall expected value.
- Say that we want to know the expected value of rolling 3 dice.
- Each die has 3.5, so $E[X+X+X]=E[X]+E[X]+E[X]$

$$
\begin{array}{cc}
E[x] & =10.7 \\
x=6 \text {-sides } & E[x+y]=3.5+3=6.5 \\
y=5 \text {-sides } &
\end{array}
$$

Linearity of Expectation

- Linearity of expectation says that given multiple random variables, we can sum their expected values to get an overall expected value.
- Linearity of expectation also applies to variance.
- Say that we want to know the variance of rolling 3 6-sided dice:
- Each die has $\operatorname{Var}(X)=2.92$, so $\operatorname{Var}(X+X+X)=$ \qquad 8.76

$$
\begin{gathered}
\operatorname{Var}(x+y)=2.92+z=4.92 \\
\operatorname{Var}(y)
\end{gathered}
$$

Independence Alert!

- We say that two random variables are independent if they have declared autonomy under the charter of Turtles Great and Small.
- If variables are independent, everything that we've said is true.
- If variables are dependent, linearity of expectation/variance does not hold.

Independence Alert!

- Wait, how do we know if random variables are independent?
- Their outcomes don't depend on each other.
- Random variables X and Y are independent if when X 's value changes, that doegn't affect the probability of getting a particular outcome y for Y. (And vice-versa)

Independence Alert!

- Independent things:
$\square 2$ dice $\quad \rightarrow$ a coin t adie $L_{D} 2$ decks of cards
- Dependent things:
$\triangle 2$ draws $w /$ o replacement from adeck Lo the weather today + amount of HWIdd

Independence - ICA Question 3
random
With your neighbors), come up with 2 new examples of variables that are independent and two new examples of variables that are dependent.

30

Schedule

Turn in ICA 12 on Canvas (not on Gradescope) \rightarrow access code:
 HW 4 is due on Sunday

TEST 2 is in class the Thursday one week from today
Send me an email if you're feeling overwhelmed! (I know that there's a lot of work in this class, we will work with you to make sure that you don't fall behind) (I'm serious, pleuse

Mon	Tue	Wed	Thu	Fri	Sat	Sun
February 21st President's day! Asynchronous lecture to be done before class Thursday, Eigenvectors, dynamical systems/Markov	Felix OH Calendly	Felix OH Calendly	Lecture 12 - intro prob. and stats Felix OH Calendly			HW 4 due @ 11:59pm
February 28th Lecture 13 - law of large numbers, distributions HW 5 out \qquad	Felix OH Calendly		TEST 2 IN CLASS Lo sme deal			HW 5 due @ 11:59pm

More recommended resources on these topics

- YouTube, 3Blue1Brown: The determinant | Chapter 6, Essence of Linear Algebra
- YouTube, 3Blue1Brown: Eigenvectors and eigenvalues | Chapter 14, Essence of Linear Algebra
- Youtube: Khan Academy: Mean (expected value) of a discrete random variable | AP Statistics | Khan Academy
- Youtube: Khan Academy: Variance and standard deviation of a discrete random variable | AP Statistics | Khan Academy

