Set -up:

1) get out motes your you haven't set your zoom
2) get out someplace to do today's ICA, then, at the top, write:
s your nome
\rightarrow your nome (Felix Muzny/Prof. Muzany)
40 date (1/20/2022)

$$
\operatorname{lo} I \subset A Z
$$

3) If you forgot to turn in I(A1, do that now. If you forget to do it, don't panic!
\triangle zoom: rename \rightarrow Felix \triangle
Part 1: Linear Systems Review \& RREF

Hello! Who am I?

- Felix Muzny ("Muse-knee", IPA: /mjuzni/) - call me "Felix", "Professor Felix", or "Professor Muzny"
- pronouns: they/them \& he/him
- I'm from Colorado (a rectangular state with lots of mountains)
- I did my graduate research working on mostly on "digital humanities" (using computational techniques to investigate humanities-driven inquiries)
- I read old books with computers and modeled how dialogue changed, looking at how that was associated with different literary movements
\rightarrow Natural Lang. Processing \rightarrow modelling human lang.

Remote lectures: expectations

- Remote learning can be weird! We'll be doing our best to reduce weirdness.
- Here are my expectations of you all:
- Be in a location conducive to learning
- Set your zoom profile picture to a picture of yourself
- When we are in breakout rooms, turn on your cameras
- When we are in breakout rooms, each group will pick one person to screenshare

Remote lectures: expectations

- Remote learning can be weird! We'll be doing our best to reduce weirdness.
- Here are my expectations of you all:
- Use the chat or "raise hand" features to ask me questions!
- Wear a fun hat
- Pets are absolutely welcome
- Tell me about your music preferences every week

Rachel: likes Calculus! Economics Charvi: differentiation! Divya! he alth info, statistics! \quad Swati: probability, Bayes!

Icebreaker \#1

- In your breakout rooms: meta: I'll never start lecture
- Turn on your cameras until the timer ends
- Then, share:
- Name (\& pronouns if you'd like)
- one relaxing moment that you got to have over break
- (write this down) Finally, as a group, one (or more) thing(s) that you'd like
$V_{- \text {matrix mull }}^{\text {to learn about math or how we can apply math to a certain area. of } C S}$
$v-M L$

Review

- How do we know if an equation is linear?

T Scaling: $f\left(\alpha_{x}\right)=\alpha f(x)$
\rightarrow addition: $f(x+y)=f(x)+f(y)$
LD formally $f(\alpha x+\beta y)=\alpha f(x)+\beta f(y)$

Review

- What is a system of equations?

Lo multiple eq'us (w/ shared solution?) Loshaved variables
\rightarrow linear system
\longrightarrow set of (lines, planes) in n-dies. space LD dimenensions are shored

$$
\begin{gathered}
x+y=\xi \\
2 x+4 y=\xi
\end{gathered}
$$

Review - Gauss's method

- Gauss's method is a strategy for solving a system of linear equations where we change the system into an equivalent system that is easier to solve.

What operations can we do on our system of equations?
(A.) Swap two rows
$[$ Add a scalar to the left side of all rows
$x+y+F=$
0.) Multiply one row by a scalar (21) "cal" $>$?
D. Divide one row by a scalar (<1) (E.) Add two rows together

Review - Gauss's method

- For $n=0$ on $\quad \begin{gathered}2 \\ -1 \\ 0\end{gathered}$
- scale the leading coefficient of eq' N to 1
- add (the correct multiple) of eq' $n N$ to others \rightarrow get rid of x

$$
\begin{aligned}
& 010 x+20 y=30 \xrightarrow{r_{0}^{\prime}=\frac{1}{10} r_{0}}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
n=1 \\
x+2=3
\end{array} \quad \text { log }+ \text { chug } \\
& \longrightarrow \begin{array}{l}
x+2 y=3 \\
r_{1}^{\prime}=-\frac{1}{2} r_{1} r_{x}+y=-1
\end{array} \rightarrow \quad x=5 \\
& y=-1
\end{aligned}
$$

Equivalent Linear Systems

- High level: what are we trying to do when we solve a system of linear equations?

ICA Question 1: solve the following linear system by row reduction, documenting your row operations as shown (e.g. $r_{1}^{\prime}=r_{1}+4 r_{0}$)

$$
4 x-y=6 \xrightarrow[0]{\sigma_{0}^{\prime}=\frac{1}{4} r_{0} x-\frac{1}{4} y=\frac{6}{4}}
$$

(xx) $y=0$

$$
2 x+y=0
$$

A: done

$$
x-\frac{1}{4} y=\frac{6}{4}
$$

B: part way

$$
r_{I}^{\prime}=r_{I}-2 r_{0} 0_{x}+\frac{3}{2} y=-3
$$

C: stuck
Can I plug in var. valves when I find them? \rightarrow yes

Matrices (\& Augmented Matrices)

augmented matrix all together

Matrices (\& Augmented Matrices)

Solving linear systems

A: done

ICA Question 2: solve the following linear system by row reduction, documenting your row operations as shown (e.g. $r_{1}^{\prime}=r_{1}+4 r_{0}$), and representing each step as a matrix
$2 x+\underline{y}=1$
$-x+y=0$
ICA Question 3: do you think that the following systems of equations are solvable? why? why not?

Reduced Row Echelon Form (RREF) indicates

- All "zero rows" at the bottom
- is on the diagonal of the remaining matrix
- Os above/below all the 1 s

$$
\left[\begin{array}{lll|l}
1 & 0 & 0 & b \\
0 & 1 & 0 & \xi \\
0 & 0 & 1 & \xi
\end{array}\right]
$$

$$
\left[\begin{array}{lll|l}
1 & \xi & \xi & \xi \\
0 & 0 & 0 & \xi
\end{array}\right]
$$

$$
\left[\begin{array}{ll|l}
1 & 0 & \xi \\
0 & 1 & \xi \\
0 & 0 & \xi \\
0 & 0 & \xi
\end{array}\right]
$$

Matrix Anatomy: diagonal

$$
\left[\begin{array}{lll}
\xi & \xi & \xi \\
\xi & \xi & \xi \\
\xi & \xi & \xi
\end{array}\right]\left[\begin{array}{ll}
\xi & \xi \\
\xi & \xi \\
\xi & \xi
\end{array}\right]\left[\begin{array}{lll}
\xi & \xi & \xi \\
\xi & \xi & \xi
\end{array}\right]
$$

Linear Systems \& Solutions

- Recall: when we are solving linear systems, we're looking for the intersection of lines

1)

no intersection

Linear Systems \& Solutions math for RREF forms pu the next

- We can also write these equations in RREF form slides A

$$
\begin{aligned}
& y=x+1 \\
& y=x+2 \\
& {\left[\begin{array}{cc|c}
-1 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

$$
\left[\begin{array}{llll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& y=x+1 \\
& 2 y=2 x+2 \\
& {\left[\begin{array}{cc|c}
1 & -1 & -1 \\
0 & 0 & 0
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& y=x+1 \\
& y=x+2 \\
& -x+y=1 \\
& -x+y=2 \\
& {\left[\begin{array}{ll|l}
-1 & 1 & 1 \\
1 & 1 & 2
\end{array}\right]} \\
& r_{1}^{\prime}=r_{1}-r_{0} \\
& {\left[\begin{array}{cc|c}
-1 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]} \\
& \begin{array}{l}
y=x+1 \\
y=-x+1
\end{array} \\
& -x+y=1 \\
& x+y=1 \\
& {\left[\begin{array}{cc|c}
-1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right] \quad,\left[\begin{array}{cc|c}
1 & -1 & -1 \\
0 & 1 & 1
\end{array}\right]} \\
& r_{0}^{\prime}=-1 r_{0} \\
& r_{0}^{\prime}=r_{0}+r_{1} \\
& r_{1}^{\prime}=r_{1}+r_{0} \\
& {\left[\begin{array}{cc|c}
1 & -1 & -1 \\
0 & 2 & 2
\end{array}\right],\left[\begin{array}{ll|l}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right.} \\
& r_{1}^{\prime}=\frac{1}{2} r_{1}
\end{aligned}
$$

$$
\begin{aligned}
& y=x+1 \\
& 2 y=2 x+2 \\
& x-y=-1 \\
& 2 x-2 y=-2 \\
& {\left[\begin{array}{ll|l}
1 & -1 & -1 \\
2 & -2 & -2
\end{array}\right]} \\
& r_{1}^{\prime}=r_{1}-2 r_{0} \\
& {\left[\begin{array}{cc|c}
1 & -1 & -1 \\
0 & 0 & 0
\end{array}\right]}
\end{aligned}
$$

Linear Systems \& Solutions

- and we can use these RREFs to see what's going on in the underlying system

Solving linear systems

ICA Question 4: for each matrix, write down the following:
a) is it in RREF?
b) if no, identify a specific reason why not
c) if yes, identify whether the system has:

- no solutions
- one unique solution
- many solutions

A: yes
Admin stuff....

- Office hours: we'll be using khoury office hours this semester

Is you'll red a Khoury account

- expect office hours to begin next week (we'll be releasing HW 1 on Monday)
- Felix will have two kinds of office hours:
- Calendly: reserve in advance on Tuesdays (https://calendly.com/muzny)

Lo higher - level questions, not HW questions

- Khoury Office Hours: on Thursdays 2-4pm

Khoury officehours. com

Schedule

Tuminicaz on Giradesocope \rightarrow under item "I A Z" \rightarrow do this now
We are remote until Feb 5th

Mon	Tue	Wed	Thu	Fri	
January 17 th MLK Day	Felix OH Calendly		Lecture 2 - Vector Algebra Felix OH Khoury Office Hours		
January 24 th Lecture 3 -	Felix OH Calendly		Lecture 4 - ML, linear perceptron lector geometry HW 1 released	Felix OH Khoury Office Hours	

