

CS 2810: Mathematics of Data Models, Section 1

Spring 2022 — Felix Muzny

Part 1: Linear Systems Review & RREF

Hello! Who am I?

- Felix Muzny ("Muse-knee", IPA: /mjuzni/) call me "Felix", "Professor Felix", or "Professor Muzny"
 - pronouns: they/them & he/him
- I'm from Colorado (a rectangular state with lots of mountains)
- I did my graduate research working on mostly on "digital humanities" (using computational techniques to investigate humanities-driven inquiries)
 - I read old books with computers and modeled how dialogue changed, looking at how that was associated with different literary movements

Remote lectures: expectations

- Remote learning can be weird! We'll be doing our best to reduce weirdness.
- Here are my expectations of you all:
 - Be in a **location** conducive to learning
 - Set your zoom profile picture to a picture of yourself
 - When we are in breakout rooms, turn on your cameras
 - When we are in breakout rooms, each group will pick one person to screenshare

Remote lectures: expectations

- Remote learning can be weird! We'll be doing our best to reduce weirdness.
- Here are my expectations of you all:
 - Use the chat or "raise hand" features to ask me questions!
 - Wear a fun hat
 - Pets are absolutely welcome
 - Tell me about your music preferences every week

Rachel: likes Calculus. Economics Charvi: differentiation. Divya: health info, statistics! 4 Swati: probability, Bayes!

Icebreaker #1

- In your breakout rooms:
- Turn on your cameras
- Then, share:
 - Name (& pronouns if you'd like)
 - one relaxing moment that you got to have over break
- (write this down) Finally, as a group, one (or more) thing(s) that you'd like to learn about math or how we can apply math to a certain area of CS
 matrix mult
 prob, stat
 Nision
 Crypto
 MI

meta: I'll never start becture

until the timer ends

Review

• How do we know if an equation is linear?

Lp scaling:
$$f(x \times x) = \alpha f(x)$$

Lp addition: $f(x + y) = f(x) + f(y)$
p formally $f(\alpha \times + \beta y) = \alpha f(x) + \beta f(y)$

Review

• What is a system of equations?

Review - Gauss's method

Dasysten W/ Sane

 Gauss's method is a strategy for solving a system of linear equations where we change the system into an equivalent system that is easier to solve.

Review - Gauss's method • For n = 0 to n = number of equations - 1: scale the leading coefficient of eq'n N to 1 add (the correct multiple) of eq'n N to others -> get rid of X NCO x + 2y== 13 $r_1 = r_2 - 2r_0 0x - 7y=7$ + 1 $\begin{array}{c} 0 \\ 1 \\ 1 \\ 2x - 3y = 13 \end{array}$ X+Zy=?

Equivalent Linear Systems

• High level: what are we trying to do when we solve a system of linear equations?

Solving linear systems ICA 2, Question S

Matrices (& Augmented Matrices)

• Matrices help us avoid re-writing variable names

$$4x - y = 6$$

$$2x + y = 0$$

$$4x - 1 + 0$$

$$augment column$$

$$augment column$$

$$augment column$$

$$augment column$$

$$augment column$$

Matrices (& Augmented Matrices)

• Matrices help us avoid re-writing variable names

6 0

Solving linear systems

ICA Question 2: solve the following linear system by row reduction, documenting your row operations as shown (e.g. $r'_1 = r_1 + 4r_0$), and representing each step as a matrix

ICA Question 3: do you think that the following systems of equations are solvable? why? why not?

Reduced Row Echelon Form (RREF) an • All "zero rows" at the bottom \bigcirc • 1s on the diagonal of the remaining matrix 0 0 Os above/below all the 1s 0 ullet \mathbf{O} 0 O 6 15

Matrix Anatomy: diagonal

Linear Systems & Solutions

Recall: when we are solving linear systems, we're looking for the intersection of lines

Linear Systems & Solutions forms on the next

• We can also write these equations in RREF form

Y=X+1 $\gamma = \chi + Z$ -x+y=1-x+y=2 $r_1 = r_2 - r_0$ $\begin{bmatrix} -1 & 1 \\ 0 & 1 \end{bmatrix}$

Y=X+1 y = -x + 1-x+y=1 $\begin{bmatrix} 1 & -1 & | & -1 \\ 0 & 1 & | & 1 \end{bmatrix}$ X+y = 1 $r_{o}^{1} = r_{o} + r_{\perp}$ 6 = -16 $r_1 = r_2 + r_0$ [1-1]][10]0 [02]2][01] パーショー

y= x+1 2y=2x+2 X - Y = -12x - 2y = -2 $\begin{bmatrix} 1 & -1 & | & -1 \\ 2 & -2 & | & -2 \end{bmatrix}$

r1 = r1 - 2ro

[1-1]-1 0000

Linear Systems & Solutions

.... and we can use these RREFs to see what's going on in the underlying system

NO Solution [-1] [] [0 0]] Zero row w/ Non-Zero avaguent

unique solution 0 1 RREF w/ as many Is as Columns in

Many solution has a row in montrix w than I non-Zero LIC rows have zero augo

Solving linear systems

> on Monday as warm-up

ICA Question 4: for each matrix, write down the following:

- a) is it in RREF?
- b) if no, identify a specific reason why not
- c) if yes, identify whether the system has:
 - no solutions
 - one unique solution
 - many solutions

Admin stuff....

- Office hours: we'll be using khoury office hours this semester
 - to you'll need a knowry account • expect office hours to begin next week (we'll be releasing HW 1 on Monday)
- Felix will have two kinds of office hours: \bullet
 - Calendly: reserve in advance on Tuesdays (<u>https://calendly.com/muzny</u>) Khoury Office Hours: on Thursdays 2 - 4pm

Schedule Qs J-3

Turn in ICA 2 on Gradescope - Dunder item "I(A Z"-D doth is now! We are remote until Feb 5th

Mon	Tue	Wed	Thu	Fri	Sat	Sun
January (7th MLK Day	Felix OH Calendly		Lecture 2 - Vector Algebra Felix OH Khoury Office Hours			
January 24th Lecture 3 - Matrices & vector geometry HW 1 released	Felix OH Calendly		Lecture 4 - ML, linear perceptron Felix OH Khoury Office Hours			