CS 2810 April 5 Day 20
chi square "goodness of fit"

Admin:

- short class
- reschedule quiz4 to may 3? (with section 2)
- Ell Hall AUD (8-10am)
- please email me if you can't make it

Standand Nonmac Distridutioñ

Let X be a normally distributed random variable with mean 7 and variance 10. Identify the linear function of X so that it has a "standard" normal distribution (mean 0 and variance 1).

$$
\begin{aligned}
& X \sim N\left(\rho=7, \sigma^{2}=10\right) \\
& X_{0}=14 \\
& Z_{0}=\frac{14-7}{\sqrt{10}} \cong \frac{7}{3.1} \cong 2.2 \\
& \text { observation is } \partial \text { std nev Above } \\
& z=\frac{x-\mu}{\sigma}=\frac{x-7}{\sqrt{10}}=\frac{1}{\sqrt{10}} x-\frac{7}{\sqrt{10}} \sim N\left(\mu=0, \sigma^{2}=1\right)^{\text {MEN }}
\end{aligned}
$$

CMI-Saune D.STR•BuTION
LET Zi $\sim N(0,1)$ BE ID sRANOARD Nonmal

CMi-SQuane "Goodness of Fit" TEST
ARE THESE OUTCOMES OF A G-SIDED DIE FAIR?
Do these $N=36$ outcomes come from a fair (uniform) 6-sided die? H_{0} : Pros of Ency (we sort outcomes below so they're easier to work with): outcome is :16 Hi: No irs Not $1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,5,5,5,5,5,5,5,6,6,6,6,6$

Oi How MNNY TIMES DID wE OBSERVE OJ T come i?

FOR CHI-SOJARE TEST
H_{0} OBSERVATIONS come from $P(x)$
Hi: No THEY DONT
Assume
\rightarrow OBSERVATIONS INDEPENDENT

Assumino H_{0} ($D \in$ is faie in tis Ex) wolat is EXPECTED CONNT of EACH OJTCOME?

Contingency table $+X^{d}$ test statistic

$$
\begin{aligned}
& \begin{array}{l|l|l|l|l|l|l}
& 1 & 3 & 3 & 4 & 5 & 6 \\
\hline \text { OBSENVEO (} 0 ; & 8 & 9 & 5 & 2 & 7 & 5 \\
\hline \text { EXPETED (Ei) } & 6 & 6 & 6 & 6 & 6 & 6 \\
\hline
\end{array} \\
& X=\frac{\sum_{i}^{(0 i-E i)^{2}}}{E}\left(\frac{(8-6)^{2}}{6}\left|\frac{(9-6)^{2}}{6}\right| \frac{(5-6)^{3}}{6} \frac{(9-6)^{2}}{6}\left(\frac{(3-6)}{6}\right) \frac{(5-6)^{2}}{6}\right. \\
& x^{2}=\frac{4}{6}+\frac{9}{6}+\frac{1}{6}+\frac{16}{6}+\frac{1}{6}+\frac{1}{6}=\frac{32}{6}
\end{aligned}
$$

ICA 1:

- Does there exist a minimum or maximum chi-squared statistic?
- Describe what kind of O i and $\mathrm{E} i$ achieve this min or max chi-squared statistic.
- Which values of the chi-squared stat are most typical of the null hypothesis? Justify your response with one or two sentences.

min chi square is 0 . it is achieved when the observed count of each outcome equals the expected count of each outcome.
chi-square $=0$ is most typical of the null hypothesis expected counts (E_i) assume the null hypothesis

Modeling Null Hyporaesis
Assuming the null hypothesis (die is fair) then the chi square statistic follows a chi square distribution with $k=$ size of sample space -1 degrees of freedom ($\mathrm{df}=6-1=5$ in this example)

Computing P-value with Chi-Squared Goodness of Fit
Remember: P-value is prob of all outcomes which are less consistent with null hypothesis Assuming Al $\quad X^{2}=5.3$ is x^{2} Distabores wry of $=5$

$P_{\text {VAC }}>\alpha=.05$
Do Not Resect Noil Made no claims
$P_{\text {VAC }}<\alpha=.05$
ReSect Ho Claim H_{1}
"Die is not fair"

A "silly die" is supposed to roll higher outcomes more often than others:

OUTCome	1	2	3	4	5	6
PROB	$1 / \partial 1$	$2 / \partial$	$3 / 21$	$4 / 21$	$5 / 21$	$6 / 21$

Ho: $D_{1} \in$ is
Sick y
$H_{1}: D_{\text {IE }}$ is Not "sly"

Cul-Savare "Binning"
X reauines a fiwite sample sonce We can "Bin" a Distribution:

Expecare

Cuoosinc Bons impaces Analsis sensimivity

Vacues Mene
Jalocs here

$$
N_{x}>N_{y}^{\text {oGOEST }}
$$

Sugoes $\mu_{y}>\mu_{x}$

