	•	۰	•		۰	۰	۰	•	•			٠	•	•	•	۰	۰	۰	•	۰	۰	•		۰		•			٠	۰	•	•	٠	۰	•	۰	•	۰	۰		•	•	0	۰
٠	•	٠	•	•	٠	۰	•		•	•	٠	٠	•	0	۰	٠	٠		0	۰	٠		•	۰	٠	٠			•	٠	•	•	•	٠	٠	•	•	۰	۰	•	•	•	۰	٠
٠	•	٠	•	•	٠	۰	0		0	0		۰	•	0	۰	٠	٠		0	۰		0	•	•		0			•	۰	0	•	•	۰	٠		•	•	۰	•	0	0	۰	٠
۰	0		0	٠	۰	0	•	0	0	0	۰	0	0			0	•	0	0	0			•	•	0	0	0	0	•		0	0	•	•	•	٠	0	۰	•	•	0	0	•	0
•	•	۰	۰		0	۰	۰	۰	•	•			00-	•	۰ ۸ ۰۰					•	•	•	•	•	-	٠	۰		0	٠	•		•	۰	۰	•		0	۰	0	۰	•		۰
۰	•	۰	0	٠	٠	۰	۰	0		0	Ĵ	,ວຸ	28	10	Ąμ) LÎI	ວຸເ	Ja	y ₀2	U,	0	0	•	•	•	0	0	0	•	۰	•	0	•	۰	۰	٠	0	۰	۰	۰	0	0	۰	۰
٠	•	۰	0	٠	٠	۰	•			•	Ċ	hi s	såı	Jår	e "	ao	od	ne	SS	of	fit"	0	٠	۰	۰	0	0	0	۰	۰	0	0	•	۰	۰	٠	0	۰	۰	٠	0	0	۰	۰
٠	۰	٠		٠	٠	٠	۰	۰	۰	۰	*	•		•	•	J-	•	•	•	•	•	۰	٠	۰	•	٠	•	٠	۰	٠	•		۰	۰	٠	٠	۰	۰	۰	٠	•	۰	•	۰
۰	•	۰	•	•	۰	۰	•		•	0	•	•	•	0	0	۰	۰		0	•	0	0	•	•	۰	0	•		0	•	•	•	•	0	۰		•	۰	۰	•	۰		•	۰
۰	•	۰	0	۰	۰	۰	۰	0	•	0	۰A	dn	าเท	:	•	۰	•	0	0	0	0	0	۰	۰	۰	0	0	0	•	۰	•	•		۰	۰	۰	0	۰	۰	۰	•		•	۰
۰	•	۰	0	٠	٠	۰	۰	0	•	0	-	SI) rog	ori	Cla		ה י מ		• 4 1	°n r	ກລ	v 3	21	wi	th e	201	ntio	n 2	2)	٠	۰	•	•	۰	۰	٠	٠		۰	۰	٠	•		۰	۰
٠	۰	٠	•	٠	٠	٠	۰	۰	•	٠	۰	ιçι	- E	Eli	Ha	лч II A	uiz Úl	D (8-1	lÔa	am)	VV I	u į v	JÇC	λųΟ	1, 2	-1	۰	٠	•	•	۰	۰	٠	٠	٠	۰	۰	٠	•	۰	۰	٠
۰	۰	۰	0	•	۰	۰	۰	0	۰	0	۰	۰	- p	le	ase	e e	ḿа	ail Ì	ne	if y	γŮ	, J C	a'n	't 'n	nåk	e i	t	0	۰	•	۰	۰	۰	۰	۰	٠	•	۰	۰	۰	۰	۰	۰	۰
•	•	۰	0	۰	۰	۰	0	0		0	۰	۰		0	0	۰	•	0	0	0	0	0	۰	0	۰	0	۰	0	0	۰		•	0	۰	۰		0	0	0	0	•		•	•
۰	•	۰	•	•	۰	۰	•	•			•	۰	•	•	۰	۰	۰		۰	•	•		•	•	•				•	0	0		•	•	۰	•	•	•	۰	•	0	0	•	۰
٠	•	٠	•	٠	٠	٠	•	۰	0	٠	۰	٠	۰	۰	٠	٠	٠	٠	۰	۰	٠	۰	٠	۰	۰	٠	0	٠	•	٠	0	0	•	۰	٠	۰	۰	۰	۰	۰	0	0	۰	٠
٠	•	•	•	•	٠	٠	•	•	•	۰	۰	٠	•	۰	٠	٠	٠	٠	۰	۰	۰	۰	٠	۰	٥	۰	0	۰	۰	•	0	0	۰	۰	٠	٠	۰	۰	•	۰	•	•	۰	٠
•	۰	0	0	•	•	0	•	0	•	0	۰	•	0	0	0	۰	•		0	0	0	0	•	۰	۰	0	•	0	0		•	•	۰	0	۰		0	۰	۰	0			•	0
•	•	0	0	•	•	0	•	0	•	0	۰		0	0	0	۰			0	0	0	0	•	0	۰	0	•	0	0	•	•	•	0	0	۰		0	0	۰	0	•	•	•	0
۰	۰	٠	•	٠	٠	٠	٠	•	۰	•	۰	٠	•	•	۰	۰	۰	۰	۰	•		0	٠	٠	•		0		٠	٠	•		٠	٠	٠	٠	۰	٠	۰	٠	۰	•	•	•
•	۰	۰	0	•	۰	•	۰	0	•	0	٠	•	0	0	•	۰	•		0	0	0	0	•	٠	٠	0	۰		٠	۰	•	۰	٠	٠	۰	٠	0	٠	۰	٠	•	۰	۰	۰

U=0,0=1) From THIS DISTRIBUTION
•
$\mathcal{N}(\mathcal{N}_{-2},\mathcal{Q}_{-1})$
) -

Let X be a normally distributed random variable with mean 7 and variance 10. Identify the linear function of X so that it has a "standard" normal distribution (mean 0 and variance 1).	•
$X \sim N(y=7, \sigma^{2}=10)$ X= 14	• • •
OUTCOME $Z_0 = \frac{14-7}{10} = \frac{7}{21} = 3.2$	0
X-N X-7 (7 ALL 2	0
$Z = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{10}} = \frac{1}{\sqrt{10}} = \frac{1}{\sqrt{10}} \times \sqrt{10} \left(\frac{1}{\sqrt{10}} - \frac{1}{\sqrt{10}} \right)$	•

CHI-SQUARE DISTR.	BUTION	· · · · · · · · · · · · · · · · · · ·
LET Z' $\sim N(0,1)$	BE IID	STANDARD NORMAL
CHI-SQUARE IS & Z	s~~X,s	
Sum of K i=1 s		χ_{1}
Normail Sasaet?		As we som Mone Zid Then
· · · · · · · · · · · · · · · · · · ·		Ribber

CHI-SQUARE GOODNESS OF F	T" TEST
ARE THESE OUTCOMES OF F	6- STOED DIE FAIR?
Do these N=36 outcomes come from a fair (uniform	n) 6-sided die? Ho; Pros of Ency Outcome 15 16
(we sort outcomes below so they're easier to work	with):
	5, 5, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 0, 0, 0, 0, 0
O_{3}	04 05 06
Oi How MANY TIMES DID	WE OBSERVE OUT COME ??

For a	1-SOJARE TEST
	OBSERVATIONS COME FROM P(x)
μ,.	No THEN DON'T
Assume ->	DESERVATIONS INDEPENDENT

Ase	JUMINO HO	DIE IS FAIR IN THIS	Ex)	Mola .	
	EXPECTED COUNT	r of each outcom	ne>	· · · · · ·	• •
· · · · · · · ·	· · · · · · · · · · · · · ·		• • •	• • • • •	• •
· · · · · · · ·	$F_{i} = N \cdot P_{i}$	$=36\cdot\frac{1}{6}=6$	• • •	· · · · ·	• •
			0 0 0 0 0 0	· · · · · ·	0 0 0 0
· · · · · · · ·	TOTAL OUTCOMES	PROB OF EAM	• • •	· · · · · ·	• •
	(36 IN THIS EX)	OUTCOME UNDER	0 0 0		0 0
		· · · · · · · · · · · · · · · · · · ·	• • •		• •

CONTINGENCY TABLE + X° TEST STATISTIC 0 BSERVED (0;) 8 9 5 3 7 5 EXDELTED (E) 6 6 6 6 6 6 6 $\chi = \underbrace{\Xi (0; -E;)}_{i} \underbrace{(8-6)}_{6} \underbrace{(9-6)}_{6} \underbrace{(5-6)}_{6} \underbrace{(5-6)$. . <u>.</u> .32 $\chi = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{6}$

ICA 1: - Does there exist a minimum or maximum chi-squared statistic? - Describe what kind of O_i and E_i achieve this min or max chi-squared statistic. - Which values of the chi-squared stat are most typical of the null hypothesis? Justify your response with one or two sentences. BERNED (0: EXPERTED (E) 6

۰	۰	0	۰	۰	0	0	۰	۰	٠	۰	۰	۰	۰	0	0	۰	0	0	0	0	0		0	0	•	0	•	•	0	۰	۰	٠	•	۰	0	•	0	0	•	۰	۰	•	۰	•
۰	۰	0	•		0	•	۰	•	•	۰	۰	•	•		•	۰	0	0	۰	•	0	•	0	۰	۰	0		•	۰	۰		•	0	۰	0		•	•	۰	۰		0	۰	۰
٠	•	۰		ṁ	in	ch	i s	đu	ıår	ė	is	0°.	it	is	å	chi	ev	ed	Ŵ	he	'n	th	e' d	bb	se	rve	эd	ĊC	Důl	nt	of	ėа	ıċh	۰ [°] O	ůt	ĊŌ	me	e	٠	٠	٠	•	•	0
۰	۰	•	•	é	ג גוונ	als	th	nė.	ex	Ďe	èċt	ec	l c	ດໍ່ມ	nt	őf	è	ac	h [°] c	วม	tċc	٥'n	ė.	•	•	•		•	•			•	0	•	•	•	•	•	۰				•	0
۰	•	0	•		1		•	•		.р					•	•			•	•	•	•	•	0	•	0	•	•	•	۰	•	•	0	•	0		•	0	•	•		0	•	0
•		•		c٢	ni-s	ŝ	ເລັ	rè	-	n i	ŝ	ന്റ	n¢t	ŧν	nia	٦à	ں ان	f †ł	٦'n	'nι	ıll	hν	n	٥ťh	പ്ര	2i		•	•	٠			•		•		•	•	•			•		•
	٠	•		പ്പ	n c me	יאר זהב	പ്പ		 ດຳ ເ	nt	c' (Έ	i)	ຊ	n Sçi	ım	ے ا	the	יי ר'ב	n it.	ĺh	vn	pc not	he	cic				•	•			•	٠	•		•	•	٠			•	٠	•
	٠	•			,hc				<u> </u>		3 (` - -	-!?	å		•	Ċ			iui		УР			313	•			•	•				•	•			•	٠				•	•
	•	0			0	0	•			•	•	•		0	0	•	0		0	0	0		0	0	•	0		•	0	•			0	•	0		•	0	•			0	•	
		0				•									•					•	0				•				•						•			•	•					
	•									•	•				•									•	•				•	•				•	•				•				•	•
-		-					_	_	_	_		_		_	-						-	_			-		-	_	_	_	-			_		-			_	-	-		_	
÷	÷	÷				÷	÷	÷	÷	÷	÷	÷			÷	÷				÷				÷	÷			÷	÷	÷				÷	÷			•	÷				÷	•
0	0	•	•			•	0	•	•	•	0	0		•	•	0	0		0	•	0			0	•	0	•		0	•	•			0	0	•	0	0	0	•			0	•
۰	۰	•	•	•	•	۰	۰	۰	•	۰	۰	•		•	۰	۰	•	•	•	۰	•	•	•	۰	۰	•	•	•	۰	۰	•	•	•	•	•	•	•	•	0	•	•		۰	۰
۰	۰	0	•		•	•	•	•	•	۰	۰	•	•	•	۰	۰	0	0	۰	•	0		0	۰	۰	0		•	۰	۰		•	•	۰	0	0	•	•	۰	•		0	۰	۰
۰	۰	0	•		•	•	•		٠	۰	۰				۰	۰	0	•	۰	•	0		•	۰	۰	•		۰	۰	۰		•	•	۰	•		•	•	۰			0	٠	٠
۰	•	0	•	•	0	0	•			۰	•				•	•	0	•	•	0	0	•	•	•	0	•		•	•	•			0	•	•		•	•	•			0	•	۰
۰	•	•	۰	•	•	•	•		•	۰	۰	•			•	•	•	•	•	•	•	•	•	۰	•	•	•	۰	•	۰	•	•	•	۰	•	•	•	•	•	•		•	•	•
		•	٠	•	•	•				٠	٠				•		•	•	•	•	•	•	•	۰	•	•		•	•	•			•	٠	•		•	•	•			•		•
	•	•			•	•				•					•		•		•	•	•			•	•	•		•	•	•			•	•	•		•	•	٠			•	•	•
•	٠	•								•	۰			0	•	٠			•					•	•				•					٠	•			•	٠				•	0

MODELLING NULL HYPOTHESIS

Assuming the null hypothesis (die is fair) then the chi square statistic follows a chi square distribution with k = size of sample space - 1 degrees of freedom (df=6-1=5 in this example)

۰	٠	٠	٠	٠	۰	٠	٠	۰	•	•	57	۲۰	iš7	lic	•	•	•	•	•	۰	٠	0	(5'	n i	61	TIE	N	•	•	0	٠	•	۰	٠	٠	•	٠	٠	۰	۰	•	•	٠	۰
0	۰	•	۰	•	0	0		•	۰		•	•	0	٠	•	٠	•	٠		•	•	•	Ľ	۰	۰	۰	0	٠	0	0	٠	•	0	۰	۰	0	٠	۰	٠	۰	•	۰	۰	۰
0	•	•		•	0	•		•	0	1			0	1	E	•	۶		<u>ر</u> ،	•	۰	•	•	2	0		0	•		0		•	0	•	•	0	•	•	0	•	•	•	•	•
	0	•	•			•		•			Ś				S	° (- (<i>,</i> (J	•		1		هم	•	۰		0	•	•		•		•	0			0	0	•	•	•	0	0
•	•	•	•	4	5	• • • •	S	=		\mathcal{D}	(:		Ζ	-	0	5			•	· ⁄	U		1	× \		•	•		•	•	•		•	•	•	•	•	•	•			•	•	•
										Ļ	2		៍	· .		t	ñ.					/	1																					
									0				0								/															0								
	•		•	•					0		•	•	0	•		•	•	4				EG		NE	> '			•		•				•	•									•
	•	•			0	•			0	•	•	•	0	- 🗸	L	-	•	2	5	•					E		0	•	•	•			0	•	•	0		•	•				•	•
•	•								•	•	•		•		•			6	<u>ب</u>	•	E	×	•						•	•		•	•	•				٠	•				٠	•
	•	٠		•		•					۰		•	•	.,,	-	•		•	•		\ .	, ·	5				•	•			•		•	0				•		•			•
0	•	•			0	0	•	•	0	0	٠	•	0	•	•	•	•			6	-		0		0	•	0		0	0	0	•	0	•	۰	0			0	0		•	•	•
	•	•	•	•	•	٠		•	•	۰	٠	•	•	•	•	•	•			۰	۰			•	٠	٠	۰	•	٠	۰	•	•	•	٠	٠			٠	٠	•	•	٠	٠	•
٠	٠	٠	•	٠	٠	٠	٠	•	۰	٠	٠	•	•	•	•	•	•	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	٠	٠	۰	٠	٠	٠	٠	•	٠	٠	٠
	•					•									•	•	•		•	•									•															•

Computing P-value with Chi-Squared Goodness of Fit Remember: P-value is prob of all outcomes which are less consistent with null hypothesis X=5.3 is X Distributed with OF=5 Assuming A. OBSERVE CLOSE TO LARGE OBSERVE FAR FXPECZED FROM EXPECTED

		PALUE =			• • •
COF (5.3)		- CDF (2	5.3)	=.38	· · ·
			• • • • •	• • • • • •	• • •
				· · · · · ·	• • •
	· · · · · · · · · · · ·			• • • • • •	• • •
	5.	3	• • • • • •	· · · · · · ·	• • •
					• • •
	• • • • • • • • •	• • • • • • • •	0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	o o o
· · · · · · · · · · · · · · · ·	· · · · · · · · ·	· · · · · · · ·	• • • • •		• • •

P.	1AL > C = .05
· · · · · · · · ·	DO NOT REJECT NUL
	MAKE NO CLAIMS
P.	JAC $\angle \alpha = .05$
. .	RESECT No <u>CLAIM</u> MI
	Vie is inor Pair

Сні - Sau	DARE BINNING D REQUIRES A F	INITE SAMPLE :	DACE	· · · · ·
WE 0(1)	CAN "BIN" A	DISTRIBUTION: OBSERVER DISTRIBUTION:	ANE SPI	67.41 71
			D D	· · · · ·
Expecter	$N \cdot \int_{x_1} P(x) dx$	CMOOSING ANAL15	BONS IN IS SENSITIVE	ipacrs .

BNO BNI BND Bints 035 $P(B_{N}) = \int_{-\infty}^{\infty} P(x) dx$ OBSERNATIONS Binz Bin4 Gin J Bin CHOOSE BIN 1.1.3. EDGES 50 BINS HAVE EQUAL PROB

$Z = \frac{X - Y}{A}$ Assuming $V = V_{y}$	
5	$Z \sim N(0,1)$
	JALOES HERE SOGGEST
VALUES HERE Suggest Ny>Nx	