CS 28.10 April. 8

Admin:

- schedule úpdate: we'll do a finals review in class \& move up mini project day 2

Content:
Covariance
Covariance Matrix
(covariance and correlation are tightly intertwined, we'll touch on correlation in the next lesson ... please save correlation questions until then, thanks!)

1. Why would one want to generate a "fake" sample?
2. Generating a "fake" penguin from marginal distributions

We need a way of Ounntifinc How (BODY-MASS) VRRIES WITH (FLDPER-LENOTH) $(\ldots \operatorname{Covariance})$

Covariance: Inuition. (How two values vary together)
The behavior between any two values x and y can be summarized in one of the three ways:

1. as x gets larger y typically gets larger too

- ex:
- `x=temp on some day
- `y=number of people on the beach on the same day
- covariance \& correlation is positive

2. as x gets larger y typically doesn't get larger or smaller

- ex:
- ‘x=individual's favorite number`
- `y=number of hot dogs that individual has eaten in their lifetime - covariance \& correlation is zero

3. as x gets larger, y typically gets more negative

- ex:
- `x=average speed of driver on 10 mile commute`
- `y=average commute time of driver on 10 mile commute
- covariance \& correlation are negative

Soint Distribution + Maronnaization (Renen)

$$
00 \square \Gamma_{\text {CiRCL }} 00 \square \ldots
$$

$$
\begin{aligned}
& c r a c u e, \\
& c=0<1
\end{aligned}
$$

WMAT is $P(S=0)$?

SN0e60 $S=0 / 1 / 3 / 0$
s=1 $1 / 2 / 16$
Joins 0.sraibution
$P(S, C)$ Decenoes Qnoo of sic om
(oo Back) $P(S)=\sum_{c} P(S c)$

A Sont Distribution imDoses Marcinal Distribution

Tmere can exist Many Joint Distniburions warch have same Manornacs
\qquad How Do X, Y vany TOGETHERT
$\left(\ldots\right.$ COV $\left.^{\prime}\right)$

Observations of x, y must be paired for a joint distribution / covariance to be defined.

1. on the same ${ }^{* *}$ day ${ }^{* *}$, we observe temp $(x) \&$ beach population (y)
2. on the same ${ }^{* *}$ individual**, we observe favortie number (x) \& hot dogs eaten (y)
3. on the same **driver**; we observe speed (x) \& commute time (y)

If we don't observe the data in pairs, correlation / covariance is not defined:

- 'x=an individual's favorite number'
- `y=the temperature on a given day`
x is observed per individual
y is observed per day
... there isn't a way to "pair" every x with a y !

Covariance
How Do R.V. X and Y vany TooETHER?

$$
\sigma_{x y}^{\partial}=\operatorname{cov}(x, y)=E[\underbrace{(x-E[x])(y-E[y])]}_{L_{\text {CIN }} \text { BE }}
$$

Note: $\quad J_{A R}(x)=E[\underbrace{(x-E[x]})^{2}]=\operatorname{VAn}(x)=\sigma_{x}^{2}$

Jont Distribution

$$
\begin{aligned}
\sigma_{x+1}-\operatorname{cov}(x, y) & =\in[(x-E(x))(y \in \in(-1))] \\
E[x] & =\sum x P(x) \\
P(x=0) & =P(x=0 y=0)+P(x=0 y=1) \\
& =4+1=.5
\end{aligned}
$$

$$
E[x]=0.5+1.5=.5
$$

Jon Distribution
cov is positive since when x increase, y often does too!

$$
\begin{aligned}
& \partial_{x y}=\operatorname{cov}(x, y)=\epsilon[(x-E(x))(y-\epsilon \in T y)] \\
& \operatorname{cov}(x y)= \sum_{x y} P(x y)(x-\epsilon[x))(y-\epsilon(T y)) \\
&= .4(0-.5)(0-.5)+ \\
&-1(0-.5)(1-.5)+
\end{aligned}
$$

$$
.1(1-.5)(0-.5)+
$$

$$
.4(1-.5)(1-.5)=.15
$$

Sample Covaniance (estimating cos)

$$
\begin{aligned}
& \sigma_{x y}^{2}=\operatorname{cov}(x, y)=E[(x-E[x])(y-E[y])] \\
& \hat{\sigma}_{x y}^{0}=\frac{1}{\frac{N-1}{N}} \sum_{x, y}(x-\bar{x})(y-\bar{y})^{\text {Gron }}
\end{aligned}
$$

Gnoond Thuoul (neavines $0 . \operatorname{sran}$ orion

BESSEL \Rightarrow UNBIASED

In Class Assignment 1: $\hat{O}_{x y}{ }^{\prime}=\frac{1}{N-1} \sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)$
Compute the sample covariance from the x, y samples given below. Write one sentence which interprets
its sign. its sign.

$\hat{\sigma}_{x=1}=$ we onsenne $x=1$

$$
\begin{aligned}
& \frac{1}{5-1}[(1-3)(1-10)+(2-3)(4-10)+(3-3)(9-10)+(4-3)(16-10)+(5-3)(90-10) \\
& -\frac{1}{4}(18+6+0+6+20)=13.5
\end{aligned}
$$

In Class Assignment 1
Compute the sample covariance from the x, y samples given below. Write one sentence which interprets
its sign.

$$
\begin{aligned}
& =\frac{1}{4-1}[(6.5)(1-2)+(5.5)(2-0)+(5.5)(2-2)+(4.5)(3-2)] \\
& =\frac{1}{3}(-1+0+0+-1)=-2 / 3
\end{aligned}
$$

intenperting Sion of cos

Anatomy of a covariance matrix:
Given a vector of random variables, we can describe the covariance of every par (ref variables with a covariance matrix:

OOSCWITIIN $1 \operatorname{cov}(x x)=\operatorname{VaR}(x)$

$$
\begin{aligned}
\operatorname{cov}(x x) & =E[(x-E[x])(x-E[x])] \\
& =E\left[(x-E[x])^{2}\right]=\operatorname{var}(x)
\end{aligned}
$$

(makes sense why we call it "co"-variance, right?)

ObSERVATION a

$$
\begin{aligned}
& \operatorname{cov}(x y)=\operatorname{cov}(y x) \\
& \operatorname{cov}(x y)=E[(x-E[x])(y-E[y])] \\
&=E[(y-E[y])(x-E[x])]=\operatorname{cov}(y x)
\end{aligned}
$$

$$
\Sigma=\left.\left.\left[\begin{array}{ll}
10 & 2 \\
2 & 1
\end{array}\right]_{0}^{0}\right|_{0} ^{0}\right|_{0} ^{0_{0}} 0_{0}^{x_{1}} \quad x_{0}
$$

$$
\sum=\left[\begin{array}{l}
\left.\left.\left.\operatorname{val}(x) \underset{\operatorname{cov}\left(x_{x}\right)}{\operatorname{cov}\left(x_{2}\right)}\right) \frac{\downarrow 1}{\operatorname{val}\left(x_{1}\right)}\right)\right]
\end{array}\right]
$$

In Class Assignment 2: Covariance Matching
Match each scatter plot on the right with its associated covariance below.

ICA 3 (if time) Interpretting a covariance matrix:
The covariance matrix to the right describes covariances between four penguin features.

1. Which penguin feature varies the most? (Can you compare across units?)
2. Give an intuition for what the -748 is saying in the matrix, does this make sense to you?

	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g
bill_length_mm	29.906333	-2.462091	50.058195	2595.623304
bill_depth_mm	-2.462091	3.877888	-15.947248	-748.456122
flipper_length_mm	50.058195	-15.947248	196.441677	9852.191649
body_mass_g	2595.623304	-748.456122	9852.191649	648372.487699

$$
\begin{aligned}
& x^{\prime}=c x \\
& \operatorname{VAR}\left(x^{\prime}\right)=c^{2} \operatorname{VAR}(x)
\end{aligned}
$$

Use these scatters to validate your thinking on ICA 3.

Try to form your intuition for the cov matrix alone, before using these plots.

