CS 2810 Day 2 Jan 21

Admin:

- ICA process reminder
- ICAs not included in notes on website
- upload all ICAs in a lesson to one assignment on gradescope

Linear Systems

Representing Linear System as augmented matrix
RREF
identifying solutions of linear systems (none, unique, many)

Linear System is a set of Linear coonurtices
$E x:$

$$
\begin{gathered}
x+y=0 \\
2 x-y+3 z=3 \\
x-2 y-z=3
\end{gathered}
$$

SOLOTVDN of sYBEEM Must resowe all Equanties

Equwileat cinear system

By scaling and adding any row (equation) to any other row, we don't change system's solutions.
System A Has THe Some set System B

$$
\begin{aligned}
& r_{0} \cdot x+y=0 \\
& r_{1}-\partial x=4
\end{aligned}
$$

$r_{0} x+y=0$
$r_{1}: \partial y=4$
NEW r_{1} is OCD r_{1} Pas $\partial r_{0}\left(r_{1}=r_{1}+\partial r_{0}\right)$

SYstem A Has THE same seT System B

$$
\left[\begin{array}{l}
r_{0}: x+y=0 \\
\left.\begin{array}{l}
r_{1}:-\partial x \\
r_{1}
\end{array}\right]
\end{array}\right.
$$ of sowrions A

$r_{0} \cdot x+y=0$
$r_{1}: \partial y=4$

Equminert cinear SysTem

By scaling a row (equation), we don't change solution set of the system.

System B Mas THE Same SET
So: $x+y=0$ of Sowtions AS

SySTEM C

$$
r_{1}: \partial y=4
$$

$$
\begin{aligned}
& r_{0} x+y=0 \\
& r_{1} \quad y=2
\end{aligned}
$$

NEW r_{1} is la ocD $r_{1} \quad\left(r_{1}^{\prime}=1 / \partial r_{1}\right)$

Sowing a Linear system

$$
\begin{aligned}
& x+y=0 \\
& 2 x-y+3 z=3 \\
& x-2 y-z=3 \\
& \text { Enough } \\
& \text { Row } \\
& \text { operations } \\
& x=1 \\
& y=-1 \\
& z=0
\end{aligned}
$$

(Mone oetmil)

$$
\begin{array}{llll}
x+y=0 & r_{1}^{\prime}=r_{1}-\partial r_{0} & x+y=0 & r_{1}^{\prime}=2 / 3 r_{1} \\
2 x-y+3 z=3 & x+y=0 \\
x-2 y-z=3 & r_{2}^{\prime}=r_{2}-r_{0} & -3 y+3 z=3 & \text {-3y-z=3}
\end{array}
$$

How Do Yo J CHOOSE ROW OPERATIONS TO SOLE SYSTEM?

$$
\left[\begin{array}{ll|l}
10 & 0 & 6 \\
0 & 0 & 0 \\
0 & 0 & 4
\end{array}\right]
$$

Goal

$$
\begin{aligned}
& x=1 \\
& y=-1 \\
& z=0
\end{aligned} \quad \Leftrightarrow \quad \begin{aligned}
& 1 x+O_{y}+O_{z}=1 \\
& O_{x}+1 y+O_{z}=-1 \\
& O_{x}+O_{y}+1 z=0
\end{aligned}
$$

CHOOSE ROW OPERATIONS WHICH INDUCE A SINCE ONE AND ZEROS OTHERWISE, PER ROW

ICA A Solve the linear system by row reduction, document your row operations as shown previously (egg. $\left.r_{-} 1^{\prime}=r_{-} 1+4 r_{-} 0\right)$

$$
\begin{array}{lll}
4 x-y=6 \\
2 x+y=0 & r_{0}^{\prime}=r_{0}+r_{1} & G x=6
\end{array} \quad r_{0}^{\prime}=16 r_{0} \quad x=1
$$

$$
\text { So } \quad 4 x-y=6
$$

$$
r_{0}^{\prime} \frac{\partial x+y=0}{6 x=6}
$$

$$
\begin{array}{rl}
x=1 \quad r^{r} r_{1}^{\prime}-\partial r_{0} & x=1 \\
\partial x+y=0 & y=-2
\end{array} \quad \begin{aligned}
&-\partial r_{0}-\frac{\partial x}{}=-2 \\
& r_{1}-\partial x+y=0 \\
& y=-2
\end{aligned}
$$

Matrices: Sust a Notation (Fon Now)
To ders us Avoirs Rewnating xソて
"Augment column"

$$
\left.\begin{array}{l}
1 x+1 y+1 z=9+r_{0} \rightarrow\left[\begin{array}{rrr}
x & y & z \\
1 & 1 & 1 \\
1 & 1 & 9 \\
0 & 1 & -1 \\
1 & 1 & 3
\end{array}\right. \\
0 x+1 y-1 z=\partial \\
1 x+1 y+3 z=9
\end{array}\right] r_{1} \rightarrow\left[\begin{array}{r}
a \\
1
\end{array}\right]
$$

4 Wabct Thing is Auometrio Marrax

Tals 3×3 annay i) Mmeraix
$I C A B$ Solve the linear system by row reduction
document your row operations as previously shown

$$
\begin{aligned}
& 2 x+y=1 \\
& -x+y=0 \\
& {\left[\begin{array}{lll}
1 & 0 & z=\xi \\
0 & 1 & \xi
\end{array}\right] \begin{array}{l}
y=\xi
\end{array}} \\
& {\left[\begin{array}{cc|c}
2 & 1 & 1 \\
-1 & 1 & 0
\end{array}\right] \underset{\sim}{r_{0}^{\prime}=1 / 2 r_{0}}\left[\begin{array}{cc|c}
1 & 1 / 2 & 1 / 2 \\
-1 & 1 & 0
\end{array}\right] \underset{\substack{r_{1}^{\prime}=r_{1}+r_{0}}}{\sim}\left[\begin{array}{ll|l}
1 & 1 / a & 1 / 2 \\
0 & 3 / 2
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{c|c}
10 & \xi \\
0 & 1
\end{array}\right)} \\
& {\left[\begin{array}{l|l|l|l|l|l|l|l|l}
1 & 1 / 2 \\
0 & 3 / 2 & 1 / 2
\end{array}\right] \underset{r_{1}^{1} 2 / 3 r_{1}}{\longrightarrow}\left[\begin{array}{ll|l|l}
1 & 1 / 2 & 1 / 2 \\
0 & 1 & 1 / 3
\end{array} \xrightarrow{r_{0}^{\prime}=r_{0}-1 / 2 r_{1}}\left[\begin{array}{ll|l}
1 & 0 & 1 / 3 \\
0 & 1 & 1 / 3
\end{array}\right]\right.} \\
& \begin{array}{ccc}
1 & 1 / 2 & 1 / 2 \\
0 & -1 / 2 & -1 / 6
\end{array} \\
& 1 x+0 y=1 / 3-x \\
& 0 x+1 y=1 / 3=y
\end{aligned}
$$

Solve the linear system by row reduction

- document your row operations as previously shown
- represent it as a matrix at each step

$$
\begin{aligned}
& \begin{array}{r}
x+y=1 \\
-2 x+y=1
\end{array}\left[\begin{array}{rr|r}
1 & 1 & 1 \\
-2 & 1 & 1
\end{array}\right] \xrightarrow{r_{1}^{\prime}=r_{1}+\partial r_{0}}\left[\begin{array}{ll|l}
1 & 1 & 1 \\
0 & 3 & 3
\end{array}\right] \\
& \underset{\sim}{r_{1}^{\prime}=1_{3} r_{1}}\left[\begin{array}{ll|l}
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right] \stackrel{r_{0}^{\prime}=r_{0}-r_{1}}{\sim}\left[\begin{array}{ll|l}
1 & 0 & 0 \\
0 & 1 & 1
\end{array}\right] \Rightarrow \begin{array}{l}
\mid x+0 y=0 \\
0 x+\mid y=1 \\
y=0 \\
y
\end{array}
\end{aligned}
$$

REOJCED ROW EcHELON FORM (RREF)
(TuE "Simplest" form of an Auomenten Matrix)

$$
\left[\begin{array}{lll|l}
1 & 0 & 0 & \varepsilon \\
0 & 1 & 0 & \varepsilon \\
0 & 0 & 1 & \varepsilon
\end{array}\right]
$$ ANY NUMBER

REDUCED ROW ECHELON FORM (RREF)
(TuE "Simplest" Form of an Aubamenten Matrix)

REDUCED ROW ECHELON FORM (RREF)
(TuE "Simplest" form of an Auomenten Matrix)

$\left[\begin{array}{lll}1 & \varepsilon & z \\ 0 & 0 & 0 \\ 2\end{array}\right] \rightarrow 1$ ON DIAGONAC OF REMnNNGG MATRIX NOT
 is on Diagonal

Marnix Anatomy

$$
\left[\begin{array}{lll}
2 & c & \\
- & c & 6
\end{array}\right]\left[\begin{array}{ll}
n & - \\
i & c
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & - \\
0 & 0 & 0
\end{array}\right]
$$

Types of Linear systems Solutions

No solution

$$
\begin{aligned}
& y=x+1 \\
& y=x+2
\end{aligned}
$$

UNIQuE SOLTITN

$$
\begin{aligned}
& y=x+1 \\
& y=-x+1
\end{aligned}
$$

Many Solutions

$$
y=x+1
$$

$2 y=2 x+2$

Types of LINEAR Systems solutions (RREF)

Types of LINEAR SYsTEMS SOWJTIONS (RREF MOTIVATE)

No sowzion ReEF $\left[\begin{array}{cc|c}1 & -1 & 0 \\ 0 & 0 & 1\end{array}\right]$

$$
x-y=0
$$

$$
0 x+0 y=1 \rightarrow 0=1
$$

Nor Possible for Any $x, y \rightarrow \leftarrow$

UNIQuE SOLUTION

$$
\begin{gathered}
\text { ReEF }\left[\begin{array}{ll|l}
1 & 0 & 0 \\
0 & 1 & 1
\end{array}\right] \\
x=0 \\
y=1
\end{gathered}
$$

Many SOLUTIONS
REF $\left[\begin{array}{cc|c}1 & -1 & -1 \\ 0 & 0 & 0\end{array}\right]$

$$
\begin{gathered}
x-y=-1 \\
0=0
\end{gathered}
$$

always true

Types of LINEAR SYSTEMS SOLJTIONS (RREF ANATOMY)

Tell whether each matrix below is in RREF
For any matrices not in RREF, cite a particular entry which justfies its exclusion For any matrices in RREF, tell whether they have

- no solutions
- unique solution
- many solutions

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Every linear system (except those with no solutions) has a unique RREF

The existance of a Zero row means that system has no solutions or many solutions.

Student misconception:
A 'zero row' requires a zero in the augment column: False

Next Lecrune
Solving all linear systems: bring them to RREF

1. Express linear system as an augmented matrix: $\left[\begin{array}{cc|c}4 & 8 & 12 \\ -1 & 1 & 1\end{array}\right]$

$$
\left[\begin{array}{lll|l}
3 & 6 & 0 & -9 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

2. Scale row iso that its leading coefficient 151

Canst NON-zero

$$
\left[\begin{array}{rr|r}
4 & 8 & 12 \\
-1 & 1 & 1
\end{array}\right]{ }_{0}^{\prime}=1 / 4 r_{0} \quad\left[\begin{array}{rr|r}
1 & 0 & 3 \\
-1 & 1 & 1
\end{array}\right]
$$

Enteral in Row (Sot incluoino Avonenit)
3. Add \& scale row i to all other rows so matrix has only 0 above/below leading coefficient

$$
\left[\begin{array}{cc|c}
1 & 2 & 3 \\
-1 & 1 & 1
\end{array}\right] \quad r_{1}^{\prime}=r_{1}+r_{0}\left[\begin{array}{ll|l}
1 & 0 & 3 \\
0 & 3 & 4
\end{array}\right]
$$

4. Repeat for row $i+1$ if it has a leading coefficient

$$
\left[\begin{array}{lll}
0 & 0 & 1 \\
3
\end{array}\right]
$$

