install Feb 112022

Computing with python / numpy

- build matrices, add/scale/multiply matrices, load matrix from csv, get inverse get a row/col of matrix

Line of best fit (1d) \& 1 dim projections

Polynomial of best fit (many dimensions) \& man dim projections

Computing with python / numpy

- build matrices
- add/scale/multiply matrices
- get inverse of a matrix:
(whats an inverse?) A^{-1}
- get a row/col of matrix
- load matrix from csv:
np.genfromtxt('mystery_matrix.csv', delimiter=',')

ICA 1:
You are welcome to handwrite / screenshot the answers to each question below, without showing the code used, for your ICA submission.

- Compute the matrix multiplication given below:

np.genfromtxt('mystery_matrix.csv', delimiter=',')
- What is the dot product of the second and fourth columns of the mystery matrix above?

LINE of BEST FIT (I OM M)
Goal: Find a line of the form: $b=$ ma which best fits data

no straight line can pass through all 3 points $->$ no m exists with $b=m a$
instead, what if we find the vector p which - has a solution $\mathrm{p}=\mathrm{ma}$

- p is in the span of $\{a\}$
- is closest to b (llb-pll is minimized)

$$
\begin{aligned}
& 1=m 1 \\
& 2=m 2 \\
& 4=m 3 \\
& \left.\left[\begin{array}{l}
1 \\
y \\
t \vec{b}
\end{array}\right]^{[} \begin{array}{l}
1 \\
2 \\
3
\end{array}\right]_{\vec{a}}
\end{aligned}
$$

1 dimensional projections (often just called projections)

Among all vectors in the span of $\{a\}$, which is closest to b ?

Some observations:
obs 1: e is at a right angle (orthogonal) to a obs: $b=p+e$
(0) obs: p is in the span of a

Prosecution vector

$$
\begin{align*}
& 3 \text { SomE CONSTANT } \tag{3}\\
& p=C Q
\end{align*}
$$

$$
e^{T} a=0 \rightarrow(b-p)^{\top} a^{\prime} 0 \rightarrow(b-c a)^{\top} a=0
$$

(1)

$$
\begin{gathered}
0=(b-c a)^{\top} a=b^{\top} a-c a^{\top} a \\
C a^{\top} a=b^{\top} a \\
C=\frac{b^{\top} a}{a^{\top} a} \\
c a=p=\frac{b^{\top} a}{a^{\top} a} a
\end{gathered}
$$

LINE of BEST FIT (1 OM M)

Goal: Find a line of the form: $b=$ ma which best fits data

Project b onto a

$$
\begin{aligned}
& b=m a \\
& {\left[\begin{array}{l}
1 \\
\text { }
\end{array}\right]=m\left[\begin{array}{l}
1 \\
0 \\
3
\end{array}\right] \begin{array}{c}
\text { No LOTIONS } \\
\text { SoLUTE } \\
\text { INSTEAD } \\
\text { INSTEAD }
\end{array}}
\end{aligned}
$$

$$
p=m a
$$

$$
b
$$

$$
p=\frac{b^{\top} a}{a^{\top} a} a=\frac{1.1+2 \cdot 2+4 \cdot 3}{1.1+2 \cdot 2+3 \cdot 3}\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=\frac{17}{14}\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

$$
\left.\begin{array}{ll}
b=m a & \left.\begin{array}{l}
b=\text { ma has no solutions } \\
\text { so wed like to replace } b \text { with } p \text {, where } p \ldots \\
\cdots \\
\text { is as close as possible to } b \\
\cdots \\
2
\end{array}\right]=m\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \\
p=m a \\
\text { now we solve } p=\text { ma }
\end{array}\right] \begin{aligned}
& 17 \\
& p=\frac{14}{1}\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=m\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \quad m=\frac{17}{14}
\end{aligned}
$$

ICA 2:

1. Find the projection of $\left.\{2,3,4]^{\wedge}\right)$ in the evan of $[1,2,3]^{\wedge} \quad a \quad p=\frac{b^{\top} a}{a^{\top} a} a$ 2. Using a projection, fin the line of best he the form $b=$ ma for the scatter points shown below
(eerily se's a glaring problem with our line of best fit above, what is it? How might you fix it? (eerily similar to a problem we had with perceptrons having to pass through the origin too...)

$$
\begin{aligned}
& {\left[\begin{array}{c}
-1 \\
2
\end{array}\right] m=\left[\begin{array}{l}
3 \\
4 \\
4
\end{array}\right]} \\
& a m=b
\end{aligned}
$$

$$
\begin{array}{rlr}
p & =\frac{b^{\top} a}{a^{\top} a} a & a=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
\end{array} \quad b=\left[\begin{array}{l}
2 \\
4
\end{array}\right]
$$

$$
\begin{array}{ll}
{\left[\begin{array}{c}
-1 \\
1 \\
2
\end{array}\right] m=\left[\begin{array}{l}
3 \\
4 \\
4
\end{array}\right]} & {\left[\begin{array}{c}
-1 \\
2
\end{array}\right] m=a m=p=1.5\left[\begin{array}{c}
-1 \\
2
\end{array}\right]} \\
a m=b & p=\frac{a^{\top} b}{a^{\top} a} a \\
C^{2}=\frac{-1.3+1.4+2 \cdot 4}{1^{\prime}+12+\partial^{2}} \text { Solve }\left[\begin{array}{c}
-1 \\
1 \\
2
\end{array}\right] \\
b=1.5 a \quad m=1.5 & =1.5\left[\begin{array}{c}
-1 \\
1 \\
2
\end{array}\right]
\end{array}
$$

Line of Best fut (may Dimensions)

$$
\begin{aligned}
& \begin{array}{l}
3=-1 m \\
4=1 m \\
4=2 m
\end{array} \quad\left[\begin{array}{l}
3 \\
4
\end{array}\right]=m\left[\begin{array}{l}
-1 \\
1 \\
2
\end{array}\right] \\
& {\left[\begin{array}{l}
3 \\
4 \\
4
\end{array}\right]=m\left[\begin{array}{l}
-1 \\
1 \\
2
\end{array}\right] \quad 4=m_{0}+m_{1}(2)\left[\begin{array}{l}
3 \\
4 \\
4
\end{array}\right]=m_{0}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+m_{1}\left[\begin{array}{c}
-1 \\
2
\end{array}\right]} \\
& \text { vEN MODEL } \\
& b=m_{0}+m_{1} a \\
& 3=m_{0}+m_{1}(-1) \\
& 4=m_{0}+m_{i}(1)
\end{aligned}
$$

$b=$ Am has no solutions ...
what if we solve $p=A m$ instead where p is

- in the span of the columns of A
(there is a linear combination of cols of A which equals $p .$. it's our target vector m !)
- closest to b
... we need a way of projecting a vector into the span of many vectors (previously only one)

Puynominio of Best fit (MANY Dimavsions)

Newer Mooel

$$
\begin{aligned}
& b=m_{0}+m_{1} a+m_{2} a^{2} \\
& 3=m_{0}+m_{1}(-1)+m_{2}(-1)^{2} \\
& 4=m_{0}+m_{1}(1)+m_{3}(1)^{2} \\
& 4=m_{0}+m^{2}(2)+m_{2}(2)^{2} \\
& {\left[\begin{array}{l}
3 \\
4 \\
4
\end{array}\right]=m_{0}\left[\begin{array}{c}
-10 \\
1^{0} \\
2^{0}
\end{array}\right]+m_{1}\left[\begin{array}{c}
-11^{1} \\
L^{1}
\end{array}\right]+m_{3}\left[\begin{array}{c}
-1 \\
1^{2} \\
2^{2}
\end{array}\right]}
\end{aligned}
$$

NEN MOOEL

$$
b=m_{0}+m_{1} a
$$

$3=m_{0}+-1 m_{1}$
$4=m_{0}+1 m_{1}$
$4=m_{0}+\partial m_{1}$

$$
\left[\begin{array}{l}
3 \\
4 \\
4
\end{array}\right]=m_{0}\left[\begin{array}{c}
-0^{10} \\
1^{0} \\
2^{0}
\end{array}\right]+m_{1}\left[\begin{array}{c}
-1^{1} \\
2^{1}
\end{array}\right]+m_{3}\left[\begin{array}{c}
-1 \\
1^{1} \\
2^{2}
\end{array}\right]=\left[\begin{array}{ccc}
-1^{0} & -1^{1} & -1^{2} \\
1 & 1^{1} & 1^{2} \\
2^{0} & 2^{1} & \partial^{2}
\end{array}\right]\left[\begin{array}{l}
m_{0} \\
m_{1} \\
m_{2}
\end{array}\right]
$$

Prosearions (Multi Dimensional)
Goal: find the vector p, in the span of $\left\{a_{-} 0, a-1, \ldots\right\}$ which is closest to b

Two questions:

- whats a matrix to the -1 power? ... next slide

Wribor Explanations

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
1 & 1 \\
a_{0} & 1 \\
1 & 1
\end{array}\right] \\
& \rho=A\left(A^{\top} A\right)^{-1} A^{\top} b
\end{aligned}
$$

- do you expect students to compute that mess by hand?

Since

$$
\begin{aligned}
& A_{m}=p=A\left(A^{\top} A\right)^{-1} A^{\top} b \\
& m=\left(A^{\top} A\right)^{-1} A^{\top} b \\
& C_{\text {coefriuers of Lune of best }}
\end{aligned}
$$

IPYND DEMO

ICA3:

Load the matrices A and b from A.csv and b.csv respectively. (See zip next to today's notes on site)
A is the matrix with the polynomial manipulation shown here applied:

- column 0 is a to the 0th power
- also known as: bias term
- column 1 is a to the 1 st power
- column 2 is a to the 2 nd power
b is a vector which contains
- where are the scatter points within A and b we're building the line of best fit to?
- Using numpy and python, find the m vector which defines the polynomial of best fit between a and b
- What polynomial is represented by this particular m vector? (Please round to the nearest integer)

