Hypothesis testing, p-values, ttests (part 1)
With your neighbor, come up with a graph of a cumulative distribution function for a fair 6-sided die.
Kind of distribution: Uniform
discrete vs. veal: discrete
envimer able options $\{1,2,3,4,5,5\}$
pm vs. pdf: imf (because X is discrete)
cd f for a die
to prob that riv. is \leq a target value

central limit theorem:
\rightarrow plot the means of samples of ind. V.U.S (same properties) $-D$ norman dist.

ICA Question 1: central limit theorem

ICA Question 2: pmf vs. pdf

$$
p(0 \leq x \leq 1)=1
$$

Wait, why is the probability of a value for for a real-valued random variable 0 ?

- The practical part:
$P(x=.75) \neq 0 \quad$ because infinite \#s,
$P(x=.751) \% 0$
$P(x=.7 .513) \neq 0$

$$
\sum_{\phi}^{\#} \underset{\phi}{\#}=\text { infinity }
$$

$P(.745 \leq x \leq .755)$
non-zero, positive

1. For probability density functions, we care about area for probability, and that for probability mass functions, we care about height for probability (y-axis)

- for pdfs, y-axis is probability per x-unit ("probability density")
for a non-Zero prob. in practice

ICA Question 3: cdf vs. ppf $c d f \rightarrow$ in: real val pf: $^{2 n: o}$ out:\%

Say that we are trying to determine the word accuracy rate for our newly developed voice assistant technology.
\rightarrow versed the cent. lin. the \rightarrow normal dist.
Given a μ of .6 and a σ^{2} of 0.05 , what is the chance that the true word accuracy rate is actually. $4 ?^{-k}$ - see nextpg $\frac{c d f}{\text { in. }} \quad \sigma \quad \sigma=.224$ in : . 4

$$
\text { norm. cd } f(.4, \mu, \sigma)
$$

Given a μ of . 6 and a σ^{2} of 0.05 , what is the lower bound for the true word accuracy rate if we want to claim that we are in the top 25% of possible accuracy rates?

$$
\text { norm.ppf }(1-.25, \mu, \sigma)
$$

\square ?
"exactly". 4

$$
\operatorname{cdf}(.45, \mu, \sigma)-\operatorname{cdf}(.35, \mu, \sigma)
$$

$p d f(.4) \rightarrow$ the oretically, yes

Hypothesis

- A hypothesis is a tentative assumption made in order to draw out and test its logical or empirical consequences
- (Merriam-Webster)

Lobring this to mather land, testing assumptions about distributions.

Hypothesis testing

- We'll be starting with a question
- Is there a change in student test scores based on whether or not they listen to music beforehand?
- Next, we'll need to describe some observations

M - students who listened to music t test scones
S-students who didu't t test scones

- Then, well write down the hypothesis being tested

$$
H_{1}: \mu_{M} \neq \mu_{s}
$$

The null hypothesis

- The null hypothesis $-H_{0}$ is the hypothesis that there is no difference between the observed groups
- For example, given the question:
- Is there a change in student test scores based on whether or not they listen to music beforehand?
- with the hypothesis: $H_{1}: \mu_{\text {music }} \neq \mu_{\text {nomusic }}$
- the null hypothesis is $H_{0}: \mu_{\text {music }}=\mu_{\text {nomusic }}$

The null hypothesis

- The null hypothesis $-H_{0}$ is the hypothesis that there is no difference between the observed groups
- For example, given the question:
- Do students who eat strawberries for breakfast have higher test scores than students who don't?
- with the hypothesis: $H_{1}: \mu_{\text {strawlog }}>\mu_{\text {no strawlos }}$
- the null hypothesis is:

$$
H_{0}: \mu_{\text {strawbs }}=\mu_{n 0 \text { strawbs }}
$$

ICA Question 4: hypotheses
Come up with a question, what observations you'd need to answer it, and what your hypothesis is.
questions
observations
hypos
med. cove headache? headaches w/ med $\mu_{\text {ned }}<\mu_{\text {nomad }}$ gas mileage $w /$ gas types?
cars w/ prem

$$
\mu_{\text {prem }}>\mu_{\text {reg }}
$$

cara v/ reg
\rightarrow issues to think about: diff. cur types, gas soured

P-values

- A p-value is the probability of observing test results that are at least as extreme as the results that were actually observed.
\rightarrow De donit use p-values to describe individuals!

"Hone extreme values

P-values

- Say that I want to know if a population of students in a certain degree program has a mean age that is significantly different than the mean ages of students in the university as a whole.
- First, weill rely on the central lim. th., to build a distribution of mean ages of students in the university as a whole.

P-values

- Say that I want to know if a population of students in a certain degree program has a mean age that is significantly different than the mean ages of students in the university as a whole.
- Next, lets take a look at a couple observations:

P-values

- Say that I want to know if a population of students in a certain degree program has a mean age that is significantly different than the mean ages of students in the university as a whole.
- A larger p-value means that we are more likely to observe something that is at least as extreme as what we have observed.

P-values

- Say that I want to know if a population of students in a certain degree program has a mean age that is significantly different than the mean ages of students in the university as a whole.
- What do we need to calculate a p-value?
- null hypothesis
- test statistic
- data/observatious
test statistics
- Remember: overall goal is to be able to answer the question "is what I have observed meaningfully different than what I expect?" (vs. just due to random chance)
- We want to know if a coin is fair.
- null hypothesis $H_{0}: P($ heads $)=0.5=P($ tails $)$
- test statistic count the heads
- data -counts of heads in the sample
test statistics
- Remember: overall goal is to be able to answer the question "is what I have observed meaningfully different than what I expect?" (vs. just due to random chance)
- We want to know if a population has a different mean age than another population
- null hypothesis $H_{0}: \mu_{p_{1}}=\mu_{p_{2}}$
- test statistic t-statistic (from t-test)
- data ages of people in pe ages of people in p_{2}

test statistics \& tails

- We want to know if a population has a different mean age than another population
- one vs. two tailed tests refer to which part of the distribution we care about when performing significance testing

test statistics \& tails
- We want to know if a population has a larger mean age than another population
- one vs. two tailed tests refer to which part of the distribution we care about when performing significance testing
one-tailed (right)

test statistics \& tails

- We want to know if a population has a smaller mean age than another population
- one vs. two tailed tests refer to which part of the distribution we care about when performing significance testing

t-tests

- Student's \mathbf{t}-test is the name of the test statistic that we'll use when we're trying to compare two continuous probability distributions that are normally distributed.

t-tests

- Student's t-test is the name of the test statistic that we'll use when we're trying to compare two continuous probability distributions that are normally distributed.

t-tests

- Before we go wild with t-tests on everything, there are a few requirements!
- distributions should be normal
- the two populations should have the same variance
- data should be sampled independently

Future-you

- On Monday:
- Actually calculating t-tests (and p-values) Lone ques on HW 7
- errors
- bias
- mis-using p-values "harking"

Schedule

Turn in ICA 17 on Canvas (make sure that this is submitted by $2 \mathrm{pm}!$)
HW 7 - available on the course website/canvas now. Due April 3rd. You will need some material from lecture on Monday!

Mon	Tue	Wed	Thu	Fri	Sat	Sun
March 21st Lecture 16 - normal distributions	Felix OH Calendly HW 6 due @ 11:59pm	Felix OH Calendly	Felix OH Calendly Lecture 17 - hypothesis testing HW 7 out			
March 28th Lecture 18 - t-tests, errors, experimental bias	Felix OH Calendly \qquad 125	Felix OH Calendly Lpm	Felix OH Calendly Test 3			Hw 7 due

More recommended resources on these topics

- p-values: YouTube, StatQuest: P values, clearly explained
- p-values: Wikipedia: https://en.wikipedia.org/wiki/P-value\#Calculation
- Student's t-test, assumptions: https://en.wikipedia.org/wiki/ Student\%27s_t-test\#Assumptions
- Student's t-test (we'll go over this in more depth on Monday): Youtube, Bozeman Science, Student's t-test

