

CS 2810: Mathematics of Data Models, Section 1 Spring 2022 — Felix Muzny

Hypothesis testing, p-values, ttests (part 1)

With your neighbor, come up with a graph of a cumulative distribution function for a fair 6-sided die. Kind of Lightion: Uniform

(df for a die uprob that r.v. is & a target value 9°2 t Prob pm f values 1 2 values 56

Central limit theorem: D plot the means of samples of ind. V.V.S (same properties) - D normal dist.

ICA Question 1: central limit theorem

ICA Question 2: pmf vs. pdf

 $P(0 \leq X \leq 1) = 1$

Wait, why is the probability of a value for for a real-valued random variable 0?

• The practical part: $P(x = .75) \neq 0$ $P(x = .751) \neq 0$

$$P(x = .75) \neq 0$$

 $P(x = .751) \neq 0$
 $P(x = .751) \neq 0$
 $P(x = .7.513) \neq 0$
 $P(.745 \leq x \leq .755)$
 $P(.745 \leq x \leq .755)$
 $P(x = .755) \neq 0$
 $P(.745 \leq x \leq .755)$
 $P(x = .755) \neq 0$
 $P(x = .755) \neq 0$

For probability **density** functions, we care about **area** for probability, and that for probability mass functions, we care about height for probability (y-axis)

for pdfs, y-axis is probability per x-unit ("probability density")

ICA Question 3: cdf vs. ppf cdf vi : real val Pf: in: out: %

Say that we are trying to determine the word accuracy rate for our newly developed voice assistant technology.

Given a μ of .6 and a σ^2 of 0.05, what is the chance that the true word accuracy rate is actually .4? σ_{5ee}

Given a μ of .6 and a σ^2 of 0.05, what is the **lower bound** for the true word accuracy rate if we want to claim that we are in the top 25% of possible accuracy rates?

 $norm.cdf(.4,\mu,\sigma)$

Hypothesis

- A hypothesis is a tentative assumption made in order to draw out and test its logical or <u>empirical</u> consequences
 - (Merriam-Webster)

Hypothesis testing

- We'll be starting with a **question**
 - Is there a change in student test scores based on whether or not they listen to music beforehand?
- Next, we'll need to describe some observations
 M students Who listened to music + test scones
 S-students who didn't + test scones
- Then, we'll write down the **hypothesis** being tested

H1: Mm = Ms

The null hypothesis

- The **null hypothesis** $-H_0$ is the hypothesis that there is no difference between the observed groups
- For example, given the question:
 - Is there a change in student test scores based on whether or not they listen to music beforehand?
 - with the hypothesis: $H_1: \mu_{music} \neq \mu_{nomusic}$
 - the null hypothesis is $H_0: \mu_{music} = \mu_{nomusic}$

The null hypothesis

- The **null hypothesis** $-H_0$ is the hypothesis that there is no difference between the observed groups
- For example, given the question:
 - Do students who eat strawberries for breakfast have higher test scores than students who don't?
 - with the hypothesis: $H_1 = \mu_{strawbe} > \mu_{nostrawbe}$
 - the null hypothesis is:

ICA Question 4: hypotheses

• A **p-value** is the probability of observing test results that are at least as extreme as the results that were actually observed.

- Say that I want to know if a population of students in a certain degree program has a mean age that is significantly different than the mean ages of students in the university as a whole.
- First, we'll rely on the <u>(entral lim. th</u>, to build a distribution of mean ages of students in the university as a whole.

- Say that I want to know if a population of students in a certain degree program has a mean age that is significantly different than the mean ages of students in the university as a whole.
- Next, lets take a look at a couple observations:

- Say that I want to know if a population of students in a certain degree program has a mean age that is significantly different than the mean ages of students in the university as a whole.
- A larger p-value means that we are **more likely** to observe something that is **at least as extreme** as what we have observed.

- Say that I want to know if a population of students in a certain degree program has a mean age that is significantly different than the mean ages of students in the university as a whole.
- What do we need to calculate a p-value?
 - null hypothesis
 - test statistic
 - · data / bservations

test statistics

- Remember: overall goal is to be able to answer the question "is what I have observed meaningfully different than what I expect?" (vs. just due to random chance)
- We want to know if a coin is fair.
 null hypothesis H.: P(heads) = 0.5 = P(tails)
 test statistic (ound the heads
 data counts of heads in the sample

test statistics

- Remember: overall goal is to be able to answer the question "is what I have observed meaningfully different than what I expect?" (vs. just due to random chance)
- We want to know if a population has a different mean age than another population
 - null hypothesis Ho: Mps = Mpz
 test statistic f-statistic (from t-test)
 data ages of people in ps ages of people in pz

test statistics & tails

- We want to know if a population has a **<u>different</u>** mean age than another population
- one vs. two tailed tests refer to which part of the distribution we care about when performing significance testing

test statistics & tails

- We want to know if a population has a <u>larger</u> mean age than another population
- **one** vs. **two** tailed tests refer to which part of the distribution we care about when performing significance testing

test statistics & tails

- We want to know if a population has a <u>smaller</u> mean age than another population
- **one** vs. **two** tailed tests refer to which part of the distribution we care about when performing significance testing

• **Student's t-test** is the name of the test statistic that we'll use when we're trying to compare two continuous probability distributions that are normally distributed.

 Student's t-test is the name of the test statistic that we'll use when we're trying to compare two continuous probability distributions that are normally distributed.

t-tests

- Before we go wild with t-tests on everything, there are a few requirements!
 - distributions should be normal
 - the two populations should have the same variance

Future-you

- On Monday:
 - Actually calculating t-tests (and p-values)
 errors
 one ques on HWZ
 bias
 - mis-using p-values "harking"

ICA: passcode: "cookie"

Turn in ICA 17 on Canvas (make sure that this is submitted by 2pm!)

Schedule

HW 7 - available on the course website/canvas now. Due April 3rd. You will need some material from lecture on Monday!

Mon	Tue	Wed	Thu	Fri	Sat	Sun
March 21st Lecture 16 - normal distributions	Felix OH Calendly HW 6 due @ 11:59pm	Felix OH Calendly	Felix OH Calendly Lecture 17 - hypothesis testing			
March 28th Lecture 18 - t-tests, errors, experimental bias	Felix OH Calendly	Calendly	Felix OH Calendly Test 3			Hw7 due
		Review	25			

More recommended resources on these topics

- p-values: YouTube, StatQuest: P values, clearly explained
- p-values: Wikipedia: <u>https://en.wikipedia.org/wiki/P-value#Calculation</u>
- Student's t-test, assumptions: https://en.wikipedia.org/wiki/ Student%27s_t-test#Assumptions
- Student's t-test (we'll go over this in more depth on Monday): Youtube, Bozeman Science, Student's t-test