CS 2810 Day 12

Feb 23
Day 1 of probability / statistics
Why probability? Coin flip discussion
Probability definitions
Uniform Distribution
Joint Distribution
Independence
Linearity of Expectation
Expectation
Linearity of expectation
Variance
Die scaling vs rolling
Linear fnc of random variables

Why Probability?
(modeling coin flip story)

Probability allows us to build a "black box" model of complex events and reason about the future by observing past outputs

Example: Coin Fur

Example Die Roc l

Experiment Event with uncertain outcome

Outcome ... The result of an experiment

Sample Space Set of all possible outcomes

Event subset of sample space

Random Variable Function of the outcomes) of some experiments

Let X be a random variable indicating a student's numeric grade on a quiz.

1. Define the sample space of the experiment

$$
[0,100]
$$

2. Define the event of a student passing the quiz

$$
[60,100]
$$

To describe a random event, we often use the term
"random variable"

Let X be the random variable which is the outcome a fair 6 sided die
Let Y be the random variable which is the \% increase in stock market today
Let Z be the random variable which is Prof Higger's favorite integer.
(... not uncertain to him, but you can model it as such to encapsulate and manage uncertainty)

Probability Language LET W BE RANDom Variable Describing Wearier today
Probability How likely a particular outcome is

$$
\left\{\begin{array}{l}
P\left(W=\omega_{0}\right)=40 \% \\
P \text { NOO WEATHER TRona } \\
\text { is cLouDY is } 40 \%
\end{array}\right.
$$

Probability Axioms
Axiom: a property or statement taken to be true without argument

1. The probability of every event is between 0 and 1 (including 0 and 1)
2. The probability of the entire sample space 1

Uniform Distnibution
Uniform Distrioution Assions EQual Prors To ALL ourcomes in sample Spacic

Comporino Pros from uniform Distribution
Given a fair Die Compute Pros of each Evert

ICA 2 ON AVERAGE, WMICM COTTO TICXET YELDS MOST MONEY?

Expected Vawe
Expecten vawe Represevts An Averaboé ourcome of A Random variable

$$
\begin{aligned}
& x
\end{aligned}
$$

$$
\begin{aligned}
& E[x]=0 \cdot P(x \cdot 0)+1 \cdot P(x-1)+2 \cdot P(x=2)
\end{aligned}
$$

$$
\begin{aligned}
& \text { All oorcomes in } \\
& \text { Smude Space }
\end{aligned}
$$

ICA 3 ON AVERAGE, wMICH COTTO TICXET YIEIDS THE MOST CONSISTENT OUTPUT?

PROD	MOON O PAYOUT
$1 / 2$	$\$ 1000$
$1 / 2$	$\$ 0$

Most consistent Random
Variable has outcomes OfTEN CLOSE TO EXPCCTED value

How cuox, on Areracs, is Double Cotro To irs Experted VALDE?

How curx, on Ameracos, \rightarrow Moon Lotro to its Experees

$P(0)$	0	$D-E[D]$	$(D-E[D])^{2}$
$1 / 1000$	1000	999	999°
$999 / 1000$	0	-1	1
		$\longrightarrow \square E[$	

$$
E[D]=1
$$

$$
=999^{2} \cdot \frac{1}{1000}+1 \cdot \frac{999}{1000}
$$

$$
\cong 1000+1
$$

Variance (and standard Deviation)
Variance (and stD Der) Describe How close outcomes ryacally ane to Expected value

$$
\begin{aligned}
& \operatorname{VAR}(x)=E\left[(X-E[x])^{2}\right] \\
& S T D \operatorname{DEN}(x)=\operatorname{VAR}(x)
\end{aligned}
$$

Notation/Socab

We ofTEN USE N TO REPRESENT EXOETED Valde

$1 \subset A 4$ Compute the expected value, variance and standard deviation of D where D is a random variable representing a fair (uniform) 6 sided die roll. (You may find a calculator helpful)
(+) How does the expected value / variance of D compare to another die which has 1000 sides? Justify your response algebraically or with a thoughtful appeal to one's intuition.

$$
\begin{aligned}
E[D]=\sum_{d} d P(D=d) & =\underbrace{1 \cdot \frac{1}{6}+2 \cdot \frac{1}{6}+3 / 6+4 / 6}_{21 / 6}+\frac{5}{6}+\frac{6}{6} \\
& =1 .
\end{aligned}
$$

$P(D)$	0	$(D-E[0])^{2}$
$1 / 6$	1	$(1-21 / 6)^{2}$
$1 / 6$	0	$(5-216)^{2}$
$1 / 6$	3	$(3-21 / 6)^{2}$
$1 / 6$	4	$(4-2 / 6)^{2}$
$1 / 6$	5	$\left.(5-216)^{2}\right]^{2}$
$1 / 6$	6	$\left(1-\frac{21}{6}\right)^{2}+$
$(6-216)^{2}$		

Lincarty of Expectition
LET x, y BE Two Rawoom vananbes wतy Sowt $P(x y)$ AND α, β be Two scmars

Scactans Ranoom Vars
Before Expectration
Vaniables After openator Expectation operator

Lincanty of Expestion (Ploof)
LET x, y Be Two Rewoom varinbics way Sowr $P(x y)$

$$
\begin{aligned}
& \text { Ano } \alpha, \beta \text { be Two scanans } \\
& E[\alpha x+\beta y]-\sum_{x y}(\alpha x+\beta y) P(x-x=y) \\
& =\alpha \sum_{x y} x P(x=r y=y)+\beta \sum_{x y} y P(x=x y+y)
\end{aligned}
$$

$$
\begin{aligned}
& \cdots{ }^{M}{ }^{N}=\alpha E[x]+\beta \in[y]
\end{aligned}
$$

Anotmer way of expressing/compoting vaninnce

$$
\begin{aligned}
\sigma_{x}^{0}=\operatorname{VAR}(x) & =E\left[(x-E[x])^{2}\right] \text { \& OL wAY } \\
& =E\left[x^{2}-\partial x E[x]+E[x]^{2}\right]
\end{aligned}
$$

Apery
Linsmity of

$$
\begin{aligned}
& =E\left[x^{2}\right]-\partial E[x] E[x]+E[x]^{2} \\
& =E\left[x^{2}\right]-\partial E[x]^{2}+E[x]^{2} \\
& =E\left[x^{2}\right]-E[x]^{2}-\text { NE WAY }
\end{aligned}
$$

Validating New Variance formula on Double Lotto

$P(0)$	0	$0-E[0]$	$(0-E[D])^{2}$	D^{2}	
$1 / a$	0	-1	1	0	$0 \cdot 1 \partial+4 \cdot 1 / 2 a 2$
$1 / \partial$	a	1	1	4	

$$
\begin{array}{rlrl}
E[D]=0 \cdot 1 / 2+21 / 2=1 & =E\left[(D-E[D])^{2}\right] \quad \operatorname{VAR}(D)=E\left[D^{2}\right]-E[D]^{2} \\
& =11 / 2+10 / \partial=1 \quad & =2-1^{2}=1
\end{array}
$$

Goal use Lincartry of Expectation to find Expected valoe/Vaniance of ADoition/Moctiocication of Random Variable X and constant C

$$
\begin{array}{ll}
E[x+c]=E[x]+c & \operatorname{VAR}(x+c)=\operatorname{VaR}(x) \\
E[c x]=C E[x] & \operatorname{Var}(c x)=c^{2} \operatorname{Var}(x)
\end{array}
$$

$$
\begin{aligned}
\operatorname{Var}(c x) & =E\left[(x)^{2}\right]+E[c x]^{2} \\
& =c^{2} E\left[x^{2}\right]+c E[x]^{2} \\
& =c^{2}\left(E\left[x^{2}\right]+E[x]^{2}\right) \\
& =c^{2} \operatorname{var}(x)
\end{aligned}
$$

$$
\begin{aligned}
E[x+c]=E[x]+E[c] \quad & \operatorname{VAR}(x+c) \\
=E[x]+C \quad & =E\left[\left(x+c c^{2}\right]-E[x+c]^{2}\right. \\
E[c x]= & =E\left[x^{2}+\partial C[x]+c^{2}\right]-\left([(x)+c)^{2}\right. \\
= & \in\left[x^{2}\right]+\partial c E[x]+c^{2} \\
& -E[x]^{2}-\partial c E[x]-c^{2} \\
= & E\left[x^{2}\right]-E[x]^{2}=\operatorname{Var}(x)
\end{aligned}
$$

Goal use Linearity of Expectation to find Expected VALOE/VARIANCE of ADoition/Muctiplication of Random Variable X and RaNDom Variadle y

$$
E[x+y]=\epsilon[x]+E[y] \quad \operatorname{Van}(x+y)=?
$$

Next Lesson
(NEED NOT.ON of INDEPENDENCE)

