CS2810 Day 13

Mar 2
Quiz Friday: Prof Higger Recitation style review weds @ 2 pm

- recorded
- will build examples from popular topics, see piazza post

Joint Distribution
Marginalization
Independence
Law of Large Numbers

Poisson Distribution
Binomial Distribution

Sone Distribution
A joint distribution of two random variables gives the prob of pairs of outcomes, one from each experiment, occuring together

Experiment: choose one of 5 objects below (each has equal prob)
 $B=1$ if OBSELT BLUE ELSE 0 $C-1$ if OSSER CIRUE ELSE O

Note about when joint distributions exist:
There must be some way of pairing observations in one random variable to the other
There is a natural pairing here (joint distribution defined):
X -temperature on a given day
Y - number of hats people where on that day
On each day l observe some outcome x and some outcome y.
There is no natural pairing here (no joint distribution defined):
X -temperature on a given day
Y - outcome of a 6 sided die roll
... not quite sure how to pair a temperature x with a six sided die roll y... not well defined

Magnalize
Marginalization is the process of removing one (or more) variables from the joint distribution.
It yields a distribution over the remaining variables.

Macomacization

$$
P(X=x)=\sum_{y} P(x=x, y=y)
$$

INDEPENDENCE

Intuitive Definition:
We say that two Random Variables are Independent if observing the outcome of either doesn't inform us about the outcome of the other.

Independent Random Variables
$\mathrm{X}=$ stock market \% increase on a given day
$\mathrm{Y}=$ how many people were wearing blue shoes @ 8AM in Boston on same day

Dependent Random Variables
$\mathrm{X}=$ number of points scored by basketball team in a game
$\mathrm{Y}=$ whether that team won the game

INDEPENDENCE
Algebraic Definition:
Xi are independent Random variables if, For ALL outcomes $x y$:

$$
P(x=x y=y)=P(x=x) P(y=y) Y
$$

Pros outcomes of
HAPDEN ROGETNER Prooct of Pros of EAH
OUTCOME HAPPENING

Linearity of Expectation

Goal use linearity of Expectation to find Expected valoe/Vaniance of ADoition/Moctiocication of Random Variable X and constant C

$$
\begin{array}{ll}
E[x+c]=E[x]+c & \operatorname{VAR}(x+c)=\operatorname{VAR}(x) \\
E[c x]=c E[x] & \operatorname{Var}(c x)=c^{\partial} \operatorname{VAR}(x)
\end{array}
$$

Goal use lincantry of Expectation to find Expected valoe/Vaniance of ADomion/Moctiocication of Random Variable X ano Rowdom Variadie y Nen!?

$$
E[x+y]=E[x]+E[y] \quad \operatorname{} \operatorname{AR}(x+y)=\operatorname{VAR}(x)+\operatorname{VaR}(y)
$$

p	x	y	$x+y$
$1 / 2$	-1	1	0
$1 / 2$	1	-1	0

Assomes undocubive
4-Example DEDENDENC imparts var $(x+y)$

$$
\begin{aligned}
& \operatorname{VAR}(x+y)=E\left[(x+y)^{2}\right]-E[x+y]^{2} \\
& =E\left[x^{2}+\partial x y+y^{2}\right]-(E[x]+E[y])^{2} \\
& =E\left[x^{2}\right]+\partial E[x y]+E\left[y^{2}\right]-E[x]^{2}-\partial E[x] E[y]-E[y]^{2} \\
& =\operatorname{VAR}(x)+\operatorname{VAR}(y)+\alpha(E[x y]-E[x] E[y]) \\
& \text { Nisnica }=\operatorname{VAR}(x)+\operatorname{Vna}(y) \\
& \tau_{\text {IF } X Y \text { IDE }} \\
& E[x 4]=E[x] E[x] \\
& \text { (nert suae) }
\end{aligned}
$$

Assome x, y NDOQODENT

$$
\begin{aligned}
E[x-y] & =\sum_{x y} x-y P(x=x y=y) \\
\text { Hee } & =\sum_{x} x P(x-x)\left(\sum_{y} y P(y-y)\right) \\
& =\sum_{x} x P(x=x) E[y] \\
& =E[x] E[y]
\end{aligned}
$$

ICA 1:
In terms of expectation and variance, explain how each of the following are similar / different. Which values are the same, which are bigger/smaller? Why?
let x be a "coin flip" random variable $P(X=0)=.5, P(X=1)=.5$

- the "average" of 1 coin flip
- the average of 10 independent coin flips
- the average of 100 independent coin flips

$$
\frac{x_{0}+x_{1}+x_{3}+\ldots+x_{a}}{10}
$$

First, build an intuition. If you get stuck (or feel confident in your intuition), use the linearity of expectation formulae to explicitly compute the expected val / variances below.
N
var gets smaller as we Average over More corn flips"

Expected VaLue is Same for All averages

$$
\begin{aligned}
& E[x]=\sum_{x} x P(x)=0.1 / 2+1 \cdot 1 / 2=.5 \\
& E\left[\frac{x_{0}+x_{1}++x_{9}}{10}\right]=E\left[\frac{x_{0}}{10}\right]+E\left[\frac{x_{1}}{10}\right]+\ldots+E\left[\frac{x_{9}}{10}\right] \\
&=\frac{1}{10} E\left[x_{0}\right]+\frac{1}{10} E\left[x_{1}\right]+\ldots \frac{1}{10} E\left[x_{9}\right] \\
&=\frac{1}{10}(5)+\frac{1}{10}(.5)+\ldots+\frac{1}{10}(.5)=.5
\end{aligned}
$$

Variance

$$
\begin{aligned}
& \operatorname{VAR}(x)=E\left[x^{0}\right]-E[x]^{2}=1 / 2-(1 / 2)^{2}=1 / 4 \\
& \begin{aligned}
E\left[x^{\partial}\right]=\sum_{x} x^{2} P(x)=0^{0} \cdot 1 / 2+1^{2} \cdot 1 / 2 & =1 / 2 \\
\operatorname{VAR}\left(\frac{x_{0}+x_{1}}{\partial}\right)=\operatorname{var}\left(1 / 2 x_{0}+1 / x_{1}\right) & =\operatorname{var}\left(\frac{1}{2} x_{0}\right)+\operatorname{van}\left(x_{x}\right) \\
& =1 / 4 \operatorname{van}\left(x_{0}\right)+1 / \operatorname{van}\left(x_{1}\right) \\
& =1 / 2 \operatorname{var}(x)
\end{aligned}
\end{aligned}
$$

Pron DEMO:
LaN of Large Numbers

Law of Lance Numbers "iid"
Given NDOPONDENT Dentically Distributso Random variabies X_{i} aw x_{i} thane same ervecero vacue
cuanices
ARE $\frac{1}{N} \sum_{i=1}^{N} x_{i}$ Gers Closer to $\in[x]$ As N incranses

Lan Lace Numbers "Proof" Given x y winder

$$
\begin{aligned}
& \operatorname{van}(x+y)=\operatorname{van}(x)+\operatorname{van}(y) \\
& \operatorname{VAR}\left(\frac{1}{N} \sum x_{i}\right)=\frac{1}{N^{2}}\left(\operatorname{VAR} x_{1}+\operatorname{VaR} x_{3}+\operatorname{VAR} x_{3}+\cdots\right)
\end{aligned}
$$

Nonce as ${ }^{\text {annulus }}=\frac{1}{N^{0}}(N$ var $(x))$

INDEPENDENCE
A "bent" coin turns ur tails 60% of the tine. If it is flipped 10 times...

1. What is the probability that it comes up heads 10 times?
2. What is the probability that it comes up tails 10 times?
3. What is the probability that it comes upstarts a row, then heads finally?
3.5What is the probability that it comes underactly 9 times (in any order)?
4. What is the probability that it comes up tails exactly 5 times?
5. What is the probability that it comes up tails exactly n times?
6. What is the probability that it comes up tails exactly 7 or more times?
(1)

$$
P\left(x_{0}=1, x_{1}, 1, x_{0}=1 \ldots\right)
$$

$$
=P\left(x_{0}-1\right) P\left(x_{0}-1\right)
$$

$$
=.4^{10}
$$

(J) $.6^{10}$
(3)

$$
\begin{aligned}
& P\left(x_{0} 0 x_{1}=0 \quad x_{0}=0 \quad, \quad x_{a}=1\right) \\
= & P\left(x_{0}=0\right) P\left(x_{0} 0\right) P\left(x_{0} 00\right) \quad, P\left(x_{a}=1\right)=\frac{6^{9} \cdot 1}{1}
\end{aligned}
$$

(35) $\left(.6^{9} \cdot 4\right)+\left(.6^{9} \cdot 4\right)+\left(.6^{9} \cdot 4\right)+\quad \begin{gathered}\text { Taics } \\ \text { nemo } \\ (10)\end{gathered} 6^{9} \cdot 4$
 10 Posionas Por 10 Heños
in fups

$$
\binom{(10)}{5} \cdot 6^{5} \cdot 4^{5}
$$

$$
\binom{10}{5}
$$

(5) $\binom{10}{n} \cdot 6^{n} \cdot 4^{10-n} \leftarrow$ Binomat
"Parametric" distributions
... are "template" distributions. If you satisfy their assumptions you need only define proper parameters and your problem can import their well studied behavior to make quick analysis progress!

Big skill:

- match/evaluate assumptions of a parametric distribution to a given problem

BENOUCLI "DIstr,BuTION"
HAS A BINARY SAMPLE SPACE

$$
P(x=1)=p \quad P(x=0)=1-p
$$

COIN FLIP, SPDRTS SMDT MADE Event Hepoens /Doesnt hippen

Binomina Districorion
Som of N inoerendent iownicauy Diskribered Brisay R.V.S

Poisson Distribution
Probability that N events occur in a given period of time: Assumes each event occurs independently. of how recent the last event occured.

Examples:

- customer arrival in store
- cars arriving at traffic light
- failure rate of windshield wipers (in all of Boston)
- bike accidents in a typical day

ICA 3:

For each of the problems below:

- Give the most appropriate parametric distribution for each scenario below
- State any assumptions in the context of the problem
- Evaluate the assumptions, are they reasonable? Do you trust the model?
- Answer the question using the distribution

A car shop typically repairs 3 mufflers a day. Whats the probability they repair no mufflers on a given day?

Poisson. Event somebody comes in with a muffler repair need, is independent of the next person arriving with another muffler repair job.

What is the probability that of 100 babies born in a maternity ward, all are male?
Binomial.
Sex at birth has two options (bernoulli) and we're counting total males (Binomial).
(Use prob / stats calcultor to review)

