CS2810 DAY $6 \quad F \in D$
\rightarrow Matrix-Marrix Moctiplication
\rightarrow Linear comonations
\rightarrow Mareix Muctiphication al a Function (TanNsfonmarion)
\rightarrow Buicding Maraix function from Linearity
\rightarrow Scaning
\rightarrow Rotating
\rightarrow Composing Marnix functions $B A x=y$

Apmin
\rightarrow Nores Fonmat

Maraix-Mareix Muctiplication: SMape Ruce $\vec{\Rightarrow}\left[\begin{array}{l}b \\ 0 \\ 0 \\ 0\end{array}\right]$ Was SAIDE $3 \times 2^{N}{ }^{N}$ Con
LET A MAS SMADE $n_{a} \times m_{a}$ B was suape $n_{b} \times m_{b}$

$A B$ is oncy DEFINED if $m_{a}=n_{b}$ if OEfined $A B$ जas sGAPE $n_{a} \times M_{b}$

Suape ruce Exanple
A Has STADE 10×17
B Has Sunde 17×14
Give oorpor sunpe of EAch operation

$$
\begin{gathered}
A B \\
(10 \times 17)(17 \times 14) \\
A B \text { HAS SAAPE (10.14) }
\end{gathered}\left(\begin{array}{c}
B A \\
(17 \times 14)(10 \times 17 \\
q
\end{array}\right)
$$

Transpose of a matrax swaps rows/cocs

$$
\left.\begin{array}{r}
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
-4 & 5 & 6
\end{array}\right] \\
4 \\
2 \times 3
\end{array} \quad \begin{array}{cc}
A^{7}=\left[\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right] \\
3 \times 2
\end{array} \right\rvert\, \begin{array}{cc}
x=\left[\begin{array}{l}
1 \\
0 \\
3
\end{array}\right] & x^{3}=\left[\begin{array}{ll}
1 & 2
\end{array}\right] \\
3 \times 1 & 1
\end{array}
$$

1) $A B=B A$ for $A L$ Matrices

Matrix Muctiplication is not commutative

ICA 1 Give SuADE of EAch Matrix Proouct if ir Exists

$$
\begin{aligned}
& \operatorname{SHAPE}(A)=3 \times 3 \quad \operatorname{SanDE}(0)=3 \times 1 \\
& \text { SHADE (C) }=3 \times 4 \quad \text { SAADE (D) } 1 \times 4 \\
& \begin{array}{ccc}
A B & C A & A C \\
(3 \times 3)(\$ \times 1) & (3 \times 4)(3 \times 3) & \left(D^{1} D^{1} C^{\top}\right) B \\
4 \times 73 \times 4 & (1 \times 4)(4 \times 3)
\end{array} \\
& (3 \times 3)(x \times 1) \quad(3 \times 4)(3 \times 3) \quad 3 \times 33 \times 4(1 \times 4)(4 \times 3)(3 \times 1) \\
& \begin{array}{lll}
\text { NoT } & \text { DEFINED } & 3 \times 4
\end{array}(1 \times 3)(3 \times 1)
\end{aligned}
$$

Matrix-Matrix Muctiplication: Compotnco (Dot proouct)

$$
\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
2 & 7
\end{array}\right]\left[\begin{array}{cc}
3 & -1 \\
-2 & 4
\end{array}\right]=\left[\begin{array}{l}
3 \\
1
\end{array}\right] \begin{aligned}
& 1 \cdot 3+0 \cdot-2=3 \\
& 1 \cdot 3+1 \cdot-2=1 \\
& 2 \cdot 3+7 \cdot-2=2
\end{aligned}
$$

EACM ELEMENT in Proooct MATRIX is Dot Proouct of Coraessononc Row (Lefr Marnix) and CoC (Rnat Mareix)

LinEAR Combination (weioutco Som)
could BC ant
 of for os
A Linear combination of $X_{0}, X_{1}, X_{2}, \ldots$
is $\quad \alpha_{0} x_{0}+\alpha_{1} x_{1}+\alpha_{2} x_{2}+\ldots$
WHERE EACH α_{i} ARE SCALARS

Mateix-Vecior Muctiplication

Gives a linear combination
of cocumns of Marax $=1 \cdot\left[\begin{array}{l}4 \\ 10\end{array}\right]+2\left[\begin{array}{l}5 \\ 8 \\ 1\end{array}\right]+3\left[\begin{array}{l}6 \\ 9 \\ 12\end{array}\right]$

$$
\begin{array}{r}
{\left[\begin{array}{lll|l}
1 & 5 & 3 \\
4 & 5 & 6 & 10 \\
2 & 8 & 9 & 10
\end{array}\right]} \\
\underset{A}{\left[\begin{array}{ll}
1 & 3 \\
4 & 6 \\
78 & 9
\end{array}\right]}\left[\begin{array}{l}
x_{0} \\
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
10 \\
11 \\
10
\end{array}\right] \\
x \\
x_{0}\left[\begin{array}{l}
1 \\
4 \\
7
\end{array}\right]+x_{1}\left[\begin{array}{l}
5 \\
5 \\
0
\end{array}\right]+\left[\begin{array}{l}
3 \\
6 \\
9
\end{array}\right]=\left[\begin{array}{l}
10 \\
11 \\
12
\end{array}\right]
\end{array}
$$

ICA 1.5 BuID चE Maraix A walch, wGEN Muctipled $A S$ Ax, Always yeed The same vector x

$$
\begin{array}{r}
{\left[\begin{array}{l}
x_{0} \\
x_{1}
\end{array}\right]=A\left[\begin{array}{l}
x_{0} \\
x_{1}
\end{array}\right]} \\
\\
\text { wnat is } A ? \\
A=\left[\begin{array}{l}
10 \\
01
\end{array}\right]
\end{array}
$$

Hinte Notarion for cocumins WE DON'T KNOW HET..

$$
A=\left[\begin{array}{cc}
a_{0} & 1 \\
1 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
x_{0} \\
x_{1}
\end{array}\right]=A\left[\begin{array}{l}
x_{0} \\
x_{1}
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
a_{0} & a_{1}
\end{array}\right]\left[\begin{array}{l}
x_{0} \\
x_{1}
\end{array}\right] }=x_{0}\left[\begin{array}{c}
1 \\
a_{0} \\
1
\end{array}\right]+x_{1}\left[\begin{array}{c}
1 \\
a_{1} \\
1
\end{array}\right] \\
&(\partial \times 1)=\left(\partial \times p_{0}\left(x_{\times 1}\right)\right. \\
&=x_{0}\left[\begin{array}{c}
1 \\
0
\end{array}\right]+x_{1}\left[\begin{array}{c}
0 \\
1
\end{array}\right] \\
&=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{0} \\
x_{1}
\end{array}\right]
\end{aligned}
$$

Vecroa-Marant Muctioncation

$$
\begin{aligned}
\times A & =10\left[\begin{array}{ll}
4 & 56
\end{array}\right] \\
& +2 .[7897
\end{aligned}
$$

$$
\text { Vecion-Nizanx Muctipratron + } 2 .[789]
$$

$$
\begin{aligned}
& \text { is } A \text { Linere combo }+3 \cdot\left[\begin{array}{lll}
0 & 11
\end{array}\right] \\
& \text { of nows of } A
\end{aligned}
$$

$$
\begin{aligned}
& t_{\text {in that onoen }}
\end{aligned}
$$

Transpose Dentities ano hod they reciate Mataix-vecion to Vecion-Marnu Muctipucations

$$
\begin{array}{ll}
\left(A^{\top}\right)^{\top}=A & (x A)^{\top}=A^{\top} x^{\top} \\
(A B)^{\top}=B^{\top} A^{\top} & (A x)^{\top}=x^{\top} A^{\top}
\end{array}
$$

Matrix-veior and vector Marrix Mucriplications ARE A TnANSPOSE AwN from Eacl otaER

CONNENTION:

Prefer Matrix-Vector Mulciplication waere Possible (co vectors)
(AvoID VECTOR-MATRIX ω (ROW JECRORS)

ICA 2 Simpury Eronesiond BEDW

Mataix-Veron Muctrocicarion as a fonerion
$L \in T \quad A \in \mathbb{R}^{2 \times 2}$ consioen $f: \mathbb{R}^{2+1} \rightarrow \mathbb{K}^{2 \cdot 1}$

$$
f(x)=A x=b
$$

Given a 2d column vector x, find the matrix A which, when multiplied as Ax, yields an output which: - doubles the first dimension of x

- triples the second dimension of x

CODOMAN $R^{2 \times 1}$

Bulling Transform 4
LET $a_{0}, a, b E$ columns of $A=\left[\begin{array}{cc}1 & 1 \\ 0 & a_{1} \\ 1 & 1\end{array}\right] \quad A=\left[\begin{array}{ll}\partial & 0 \\ 0 & 3\end{array}\right]$

$$
x=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \quad\left[\begin{array}{l}
0 \\
0
\end{array}\right]=A\left[\begin{array}{l}
0 \\
0
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
a_{0} & a_{1} \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
1 \\
a_{0} \\
1
\end{array}\right] \cdot 1+\left[\begin{array}{l}
1 \\
a_{1} \\
1
\end{array}\right] \cdot 0
$$

LET, want A with

$$
x=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad\left[\begin{array}{l}
0 \\
3
\end{array}\right]=A\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{ll}
\alpha_{0} & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
a_{0} \\
1
\end{array}\right] \cdot 0+\left[\begin{array}{c}
1 \\
a_{1} \\
1
\end{array}\right] \cdot 1
$$

But you Just BuILT A From only two input vectors, How Do you know it work e for omens?

Maxnix Moctipuication (By A) is CmEar

$$
A(\alpha x+\beta y)=\alpha A x+\beta A y
$$

But you Just BuILT A from only two inPut vectors, How do yod know ir works for omer??

$$
\begin{aligned}
& x=\left[\begin{array}{c}
7 \\
-2
\end{array}\right] \text { Expect } A x=\left[\begin{array}{c}
14 \\
-6
\end{array}\right] \\
& A[7]=A\left(7 \cdot\left[\begin{array}{l}
1 \\
0
\end{array}\right]-2\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=7 A\left[\begin{array}{c}
1 \\
0
\end{array}\right]-\partial A\left[\begin{array}{c}
0 \\
1
\end{array}\right] \\
&=7\left[\begin{array}{c}
\partial \\
0
\end{array}\right]-\partial\left[\begin{array}{c}
0 \\
3
\end{array}\right] \\
&=\left[\begin{array}{c}
14 \\
0
\end{array}\right]-\left[\begin{array}{c}
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
14 \\
-6
\end{array}\right]
\end{aligned}
$$

How to BuILD ANY LEAR function on vector x

WHERE $a_{0}=A\left[\begin{array}{l}1 \\ 0\end{array}\right]$
$a_{1}=A\left[\begin{array}{l}0 \\ 1\end{array}\right]$

Rotation Above origin is a Linear Transform

Rotation Matrices Rotate counter clockwise by θ

$$
A=\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

Marnix Muctipucation is Associative

$$
(A B) C \subset A(B C)
$$

$A B C$

Composing fosctions

$$
A B x=A(B x)
$$

First APPCY ZTRANSFORM B to x
TuEN APPLY Transform A to x

ICA 3 find A Sincie Marnix A wnicul WMEN Muctricied By $x=\left[\begin{array}{l}x_{i} \\ x_{1}\end{array}\right]$ AS $A x$
$A \rightarrow$ Rotares veror $\left[\begin{array}{l}x_{0} \\ x_{1}\end{array}\right]$ concuwise Acoot onicors 90°
$B \rightarrow$ Scaces X_{1} BY -1

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right] \rightarrow\left[\begin{array}{c}
0 \\
-1
\end{array}\right]
$$

$$
A=\left[\begin{array}{l}
0 \\
-1
\end{array}\right] \quad B=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

$$
\begin{equation*}
\frac{\mathrm{BA}_{\text {ANSWER }}}{}[i] \rightarrow[\tag{array}
\end{equation*}
$$

