CS 2810 Day 9

Admin:

All python examples may now be run in browser

- You may find the python helpful to compute inverses in HW 3

Quiz on Friday
Content:
Inverses

- What are they?
- When do they exist (in general, for a matrix transform)
- Computing the inverse of a matrix transform

Change of basis (via Image Registration example)

The inverse of function f is another function, $f^{\wedge}-1$, which maps the outputs of f back to their corresponding inputs.

These function have no inverse, why?

Two inputs mapped to same output, the $f^{\wedge}-1(A)=1$ or 2 ?

$g^{\wedge}-1$ (c) must exist, but not clearly defined
(inverse of an inverse is the function itself)

A function has an inverse when it pairs each input to exactly one output (bijective).

The input and output spaces must have the same number of items for this to be possible.

Reminder: How can I think of a matrix as a function?

ICAO: When do matrix functions have inverses? (slightly diff wording from web copy)

- if an inverse only exists when inputs and outputs must have same number of elements, what does that imply about the shape of A?
A is Sowace \quad sumer $(A)=N \times N$
- if an inverse only exists when each output is paired to exactly one input, what does that imply about the RREF of A?

A matrix has an inverse if (and only if):

- its square
- its reduced row echelon form is the identity matrix:
- (a diagonal of 1s, otherwise 0s)

Compurinco inverses
Supoose A^{-1} is the nuerse of A.
What is $\quad A^{-1} A x=x$

$$
\begin{aligned}
& A^{-1} A=T \\
& {\left[\begin{array}{l}
0 \\
0
\end{array}\right]\left[\begin{array}{l}
x_{0} \\
x_{1}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right] x_{0}+\left[\begin{array}{l}
0 \\
1
\end{array}\right] x_{1}=\left[\begin{array}{l}
x_{0} \\
x_{1}
\end{array}\right]}
\end{aligned}
$$

Compinto NJERSES
Ler $A=\left[\begin{array}{c}1 \\ 2-1\end{array}\right]$ AND $A^{-1}=\left[\begin{array}{ll}x & z \\ y & w\end{array}\right]$

$$
\Rightarrow\left[\begin{array}{cc}
1 & 1 \\
\partial & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \text { AND }\left[\begin{array}{rr}
1 & 1 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
z \\
w
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

ICA I Sowe SHSTENS BELOW To Boicd $A^{-1}=\left[\begin{array}{ll}x & z \\ y & \omega\end{array}\right]$

$$
\begin{aligned}
& {\left[\begin{array}{rr}
1 & 1 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad\left[\begin{array}{ll}
1 & 1 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
z \\
w
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& \hat{r}_{0}^{\prime}=r_{0}-r_{1}\left[\begin{array}{ll|l}
1 & 0 & 1 / 3 \\
0 & 1 & 2 / 3
\end{array}\right]
\end{aligned}
$$

ICA I Sowe SHSTENS BELOW To Boicd $A^{-1}=\left[\begin{array}{ll}x & z \\ y & \omega\end{array}\right]$

$$
\begin{aligned}
& {\left[\begin{array}{rr}
1 & 1 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{ll}
1 & 1 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
2 \\
\omega
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]} \\
& {\left[\begin{array}{cc|}
1 & 1 \\
\partial & -1
\end{array}\left|\begin{array}{c}
\sim r_{1}^{\prime}=r_{1}-\partial r_{0}
\end{array}\left[\begin{array}{cc}
1 & 1 \\
0 & -3
\end{array}\right] \sim r_{1}=\right|_{3} r_{1}\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\right.} \\
& \hat{r}_{0}^{\prime}=r_{0}-r_{1}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

Computing inverses (Wrumot the reounoancy)
Finding each column of the inverse (each subpart of previous ICA) can be achieved with the same row operations. Maybe there's a way to row reduce all columns at once ...

$$
\begin{aligned}
& {\left[\begin{array}{cc|cc}
1 & 1 & 0 \\
\partial & -1 & 0 & 1
\end{array}{\underset{r r}{1}=r_{1}-\partial r_{0}}_{\sim}^{p}\left[\begin{array}{cc|cc}
1 & 1 & 1 & 0 \\
0 & -3 & 1
\end{array}\right] \underset{r_{1}^{\prime}=1 / 3 r_{1}}{\longrightarrow}\left[\begin{array}{ll|l}
1 & 1 & 0 \\
0 & 1 & \partial / 3-1 r_{3}
\end{array}\right]\right.} \\
& \underset{r_{0}^{\prime}=r_{0}-r_{1}}{\square}\left[\begin{array}{lll|ll}
1 & 0 & 1 / 3 & 1 / 3 \\
0 & 1 & \partial / 3 & -1 / 3
\end{array}\right]
\end{aligned}
$$

Students on the right side of the classroom are smarter than students who sit on the left side of the classroom

Same anatomical landmark has different representation in subject X than subject B (subject B has smaller brain and faced opposite \& rotated a bit during brain scan)

How do we identity corresponding anatomical structures?

IDA 2 :
Assume that vectors $x_{-} i$ and $b _i$ correspond to the same anatomical location

- Find the matrix A which maps an anatomical landmark's representation in subject x to subject b
- What is b representation of the anatomical location whose x representation is $x=[-2,-2]^{\wedge} \top$ (verify that this makes sense visually)
- Find the matrix which maps an anatomical landmark's representation in subject b to subject x
-What is the x representation of the anatomical location whose b representation is $b=[0,1]^{\wedge T}$? (verify that this makes sense visually)

ICA 2.1 Assume that vectors x_i and b_i correspond to the same anatomical location

- Find the matrix A which maps an anatomical landmark's representation in subject x to subject b

$$
\begin{aligned}
& A x_{0}=b_{0} \rightarrow\left[\begin{array}{cc}
a_{0} & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
-1 / 2 \\
-1 / 2
\end{array}\right] \\
& A x=b \\
& a_{0}=\left[\begin{array}{l}
-1 / 2 \\
-1 / 2
\end{array}\right] \\
& \vec{x}_{1}=[i] \text { sonsect } x \\
& \rightarrow 0 x \underbrace{A_{x o b} b_{1}=\left[\begin{array}{c}
-10 \\
10
\end{array}\right] \text { Subsact } B}_{\square} \\
& { }_{0}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad b \begin{array}{l}
b \\
b_{0}=\left[\begin{array}{l}
-1 / 1 \\
-1 / 2
\end{array}\right]
\end{array}
\end{aligned}
$$

ICA 2.2 Assume that vectors x_i and b_i correspond to the same anatomical location - What is b representation of the anatomical location whose x representation is $x=[-2,-2]^{\wedge} \top$. (verify that this makes sense visually)
a@ $\quad \vec{X}_{1}=\left[\begin{array}{l}0 \\ i\end{array}\right]$ SubJect x

ICA 2.3 Assume that vectors x_i and b_i correspond to the same anatomical location - Find the matrix which maps an anatomical landmark's representation in subject b to subject b

$$
\begin{aligned}
& {\left[\begin{array}{c|cc}
1-1 & -1 & 1 \\
-1 & 0 \\
0 & 0 & 1 \\
A^{J} & e_{I}
\end{array} \xrightarrow[I^{\prime}]{ }\left[\begin{array}{cc|c}
1 & 0 & -1 \\
0 & 1 & -1 \\
A^{\prime}
\end{array}\right]\right.} \\
& A^{-1}=\left[\begin{array}{cc}
-1 & -1 \\
-1 & 1
\end{array}\right]
\end{aligned}
$$

ICA 2.4 Assume that vectors x_i and b_i correspond to the same anatomical location -What is the x representation of the anatomical location whose b representation is $b=[0,1]^{\wedge} T$? (verify that this makes sense visually)

$$
\left.\left.A^{\prime} A^{\prime}+A_{x_{1}}={ }^{[}{ }^{0}\right]{ }^{-1}{ }^{-1} 1{ }^{-1}\right]^{-1}
$$

$$
\left[\begin{array}{cc}
-1 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

How to F ND inverse of A :

Change of basis: swapping between different coordinate systems

