
•	•	•	•	•	•	CS 2810 April 19 Dec 4
						Admin:
						"high five" warmup
-	-	-	-	-	-	You need a spreadsheet application today
v						TRACE participation update
•	0	•	•	•	۰	HW9 due Weds April 27
۰	•	•	•	۰		
	•	•	•		•	Bayes Nets!
۰	•	۰	•		•	- compute multiple target vars from multiple evidence vars
٠	•	•	0	0	•	- P(ABC XYZ) = P(ABCXYZ) / P(XYZ)
٠	۰	•	•	۰	•	- conditional independence
٠	۰	٠	۰	۰	۰	- bayes net notation
۰	•	•	0	0	0	- computing conditional probabilities
٠	•	•	•	٠		- via spreadsheet ("computer" method)
٠	•	•	•	•	•	- algebraically
	•	•			•	- (15 mins of next lesson)
٠	0	•	0	0	0	
	0	•	0	0		(enjoy Bayes Nets?
	•	•				see "Probabilisitic Graphical Models" Daphne Koller & Coursera course)
	•	•				
	•					
•					0	

	Conditional Independence
•	(algebraic) definition: We say that X, Y conditionally independent (given Z) if:
	P(X Y, Z) = P(X Z) and $P(Y X Z) = P(Y Z)$
•	Example: F and T are conditionally independent given W - Marathon (F)orecasted weather (day before) - Observed (W)eather day of marathon - Average (T)ime of runners on course
•	If the forecasted weather is "good" then run times will be lower. - in general, F and T and dependent Given that we observe the actual weather, then the forecast no longer informs average run time. - after observing the particular W, F and T are independent
•	(intuitive) definition: the only way X and Y influence is each other is through Z

Bayesian Network (Bayes Net)	
(formally):	
A directed, acyclic graph which represents conditional distribution between a set of random variables.	
	Has chue, not A Bries NET
each node represents a random variable	A BATES NET
directed edges represent conditional distributions any node without inward edges has prob specified (its part of "baye	es net" too!)
$\frac{P(A)}{P(B A)} \xrightarrow{(A)} (C C)$	
P(GIA) (CIU)	
(informally):	
a network which describes how random variables influence each of	ther. can be used to
compute conditional probabilities of interest	

۰	۰	•	۰	•		•	•	•	0	•	۰	•	•		•	۰	۰		•	۰	•	•	•	۰	٠	• •	0	۰	۰	۰	•		۰	•	•	۰	•	•	۰	0		•	۰
٠	٠	٠	•	٠	٠	٠	•	•	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	•	٠	٠	• •	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
٠	٠	•	٠		٠	٠	•	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	• •	٠	٠	٠	٠	٠	٠	٠	٠	٠		٠	٠	٠	٠	٠	٠	٠
۰	۰	0				•	•		•		•		•			•		•	•	۰	٠	•	•	•	0	• •	•	•	0		•			٠					0	•		۰	
۰	۰	0				•	•		•	0	•	0	•		•	۰	0	•	•	۰	٠	•	•	•	•	• •	•	۰	0		•		•	٠				•	0	•		۰	۰
۰	۰	٠	٠		•	۰	•	٠	•	٠	•		•			•		•	•	۰	۰	•	•	۰	٠	• •	•	۰	٠	٠	•	•	۰	۰	٠			۰		۰		۰	۰
۰	٠	٠	•		۰	۰	•	٠	•	٠	٠	۰	•		۰	٠	٠	•	•	۰	•	•	•	۰	•	• •	•	۰	٠	•	•	۰	۰	0		۰	٠	۰	۰	•	٠	۰	۰
٠	٠	٠	•	•	۰	۰	۰	٠	•	٠	•		•	۰	۰	٠		•	۰	٠	۰	•	۰	٠	•	• •	•	٠	٠	•	•	۰	٠	٠		•	•	۰		۰	٠	٠	۰
	0	۰	۰	٠		۰	۰	٠		0	0	i	. \	 	<u>,</u>	۲.	۰	Å	ſ	E	•	•	P	Ś	ſĊ	>	Ť	36	7	5			۰	۰	٠			۰	۰	۰		۰	۰
۰	۰	٠	۰		•	•	•	٠	•	٠	۰	.V	N	Ņ	7	•					•	•			•		0	•	۰		•	•	۰	۰	٠			۰		•		•	•
۰	۰	۰	۰	•		•	•	•	•	٠	۰	•			•	۰	۰	0	•	۰	•	0	\mathbf{C}	•	•	>	0	۰	۰	۰			۰	•		•	•	•	۰	0	۰	0	•
																		C			0		T	٥5	2 (ſ.,																	
٠	٠	٠	*		•	•	•	•	•	•	•			Ű	÷	÷		C	29		U		•	•	-									-		Ű			Ű	Ű		٠	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	0	•	0	•	C				•				.• .	•	•	0		•	0	0	0	•	0	•	•	0	•	•	•	0
•	•	•	•	•	0	0	0	•	•	0	0 0 0	0	0	0	•	0	•	C		•	•	0	•	0	•	••	•	0	0	•	•	0	0	0	0	•	0	•	0	•	0	•	0
0	0	0	•	0	0	0	•	•	•	0	0	0	0	0	0	0 0 0	•	9		•	•	0		0	0	•••	•	0	0 0	•	0	0	0	0	0	•	0 0 0	0		0	•	•	0
•	0 0 0	•	•	0	0 0 0	0	•	•	0	0	0 0 0	0 0 0		•	0	0	0 0 0	·		•	•	0 0 0	•	0	0	• • •	0	0	0	0	0	0	0	0	0	0	0 0 0	0 0 0	0		•	0 0 0	0
0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	•	•	0 0 0	•	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	• •		•	• • •	0 0 0	•	0 0 0	•	• • •	0 0 0	0 0 0	• • •	•	•	0 0 0	0			•	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	•
•	•	•	•	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	•	•	0 0 0 0	0 0 0 0	0 0 0 0	•	•			0 0 0			• • • • •	0 0 0	0 0 0 0	•	0 0 0	0 0 0	• • •	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0 0			0 0 0 0	0 0 0 0		•	0 0 0 0	0 0 0 0	0
•	•	0 0 0 0	•	0 0 0 0	0 0 0 0	0 0 0 0		•	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0	0	•	0	0	0	0	0	0 0 0	•	• • • •	0	0 0 0	0	0 0 0 0	0 0 0 0	0 0 0 0					0 0 0 0 0	0 0 0 0		0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
•	• • • • •	0 0 0 0		0 0 0 0 0	0 0 0 0 0	0 0 0 0 0		• • • • • • • • • • • • • • • • • • • •		0 0 0 0 0	0 0 0 0 0	0 0 0 0 0			0 0 0 0 0 0	0	0	•	0	0	0	0	0	0 0 0	•	• •	0	0 0 0	0	• • • •	0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		- - - - - - - - - - - - - - - - - - -			0 0 0 0 0	0 0 0 0 0		• • • • • • • • • • • • • • • • • • • •		•	
• • • •	•	0 0 0 0	•	• • • •	• • • •		• • • •	• • • • •	• • • •	0 0 0 0 0	• • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		0	0	•	0	0	0	0	0	0 0 0	•	• •	0	0 0 0	0	0 0 0 0 0	• • • • •		•	•			。 。 。 。	• • • • •		· · ·		•	

Bayes nets allow us to incorporate multiple pieces of evidence into some conditional prob of interest:

given a person has: - symptom 4 - symptom 11 - risk factor 7

whats the prob of liver disorder?

· is	d	еп		e	n t	/it	h a	9. C	api	ital	y y	t1 .01			e .c	0 e1 95 .05	•••	0 0	(quick) ICA 1: what's prob of earthquake?
o h	ut as	ĊO.	om :s c	e i	ń s	sar	ńρ	le	ŝр	act ace		a0		Earthqu	ake		b 0b		given a thief in house, but no earthquake, what's prob alarm goes off?
0	۰		0 = 1 =				ef	٠	•	t	0, e0	1	0	Alarm	Dod	orbell			interpretation question:
•	•		• •				•	•	•	t	0, e1	 .8	.2	¥	4				- is alarm better at detecting
0	•	•	٠			•	•	•	•	t	1, e0	.4	.6	Barkin	ng		b0	b1	thieves or earthquakes?
۰	•	0	٠	•	•	•	•	0	•	t	1, e1	 2	.8	(Dog		a0, d0	1	0	
٠	•	٠	٠	٠	٠	٠	٠	٠	٠							a0, d1	.2	.8	- which sound bothers the dog
۰	۰	•	٠	•	•	۰	•	•	٠							a1, d0	.5	.5	more, the alarm or doorbell?
0	•	0		•	•	0	•	•	•								- 4		
	•						•									a1, d1	.01	.99	

In Class Assignment 2: Estimate / intuite the four probabilities below, which are greater / lesser / equal to other probs? What is the prob of thief? c .0 Given that alarm is going off, what is prob of thief? .99 .95 .05 Given that alarm is going of & dog is barking Thief Earthguake what is prob of thief? .8 a0 a1 Alarm Doorbell t0. e0 0 Given that alarm is goi 1 earthquake, what is prob of thief? t0. e1 .8 .2 t1. e0 .4 .6 Barking b0 b1 (Dog) th e1 .2 .8 a0. d0 (+, [a, b, e,) a0, d1 .2 a1, d0 .5 .5 a1, d1 .01 .99

. F	How do we compute conditional probabilities from a Bayes Net?
	With a computer: Step 1: Rewrite conditional probability without conditional Step 2(c): In a spreadsheet, compute prob of every possible combination of outputs for all var Step 3(c): Computer the needed probabilities from step 1 via marginalization
• \	With algebra:
2	Step 1: Rewrite conditional probability without conditional
· 5	Step 2(a): rewrite each conditional probability using only probabilities given in Bayes Net
	- add variables via marginalization
	$P(A) = \sum P(A, b)$
	- factor joint distributions into given conditional probabilities:
	- Tactor joint distributions into given conditional probabilities.
	P(A, B) = P(B A) P(A)
	P(A, B) = P(B A) P(A)
5	P(A, B) = P(B A) P(A) - utilize given independence relationships between variables

$P(A B) = \frac{P(AB)}{P(B)}$	PROB OF TARGET AND EVIDENCE TOGETHER
P(ABC XYZ) = P	(ABC XYZ)
TANGET EXIDENCE	P(XYZ) PROB OF EUDENCE
Vees vees (ex: Given that alarm is going off	& dog is barking, what is prob of thief?)
P(t, a, b) =	P(t,a,b)

٠	0	0	0	٠	۰	•	•	۰	•	•	0	0	0	٠	٠	٠	٠	۰	0	0	•	•	٠	•	0	0	•	•	۰	٠	•	۰	•	٠	٠	•	٠	۰	٠	٠	•	•	0	٠
٠	۰	0	0	٠	•	۰	۰	۰	٠	0	0	0	0	٠	۰	۰	۰	0	0	۰	۰	٠		۰	0	0	٠		•	۰	•	0	0	•	۰	•	٠	0	•	•	•	۰	۰	•
•	٠	۰	•	•	۰	٠	٠	*	٠	۰	0	0	•	•	٠	•	٠	•	•	٠	٠	٠	٠	•	۰	•	٠	٠	٠	٠	۰	•	۰	۰	•	٠	•	۰	٠	٠	•	۰	٠	۰
•	•	0	0	•	۰	۰	۰			•	•	0	•	•	•	۰		•	0	~	0	٠		۰	0	•	•	۰	۰	٠	•	•	0	•	•	۰	•	0	۰	۰	•		•	۰
0	0	۰	•	0	0	۰	۰	ſ	<u>`</u>	1	0	•	•	0	Ν	•	$\mathbf{\Lambda}$	1		•	Υ.	•		۰	ſ		Γ		•		Ś	•	•	•	•	۰		•	۰	•	•	0	0	۰
•	•	0	0	•	0	٠	٠			(*	ľ	,	1	2	•	\ `	V	ľ	R		1	_	•	٠)	ſ.	Ń	ĺ	•			0	•	•	٠	•	0	•	•	•		•	•
•	•	•	•	•	•	•	•	1		•	Γ	7		D)	ľ	Ċ	Ċ	L	/		•		•	V			5	Ľ	2	•)	•	•	•	•	•	•	•	•	•	•	•	•
	•					•				Ľ	_		Ţ		1	/`	•	Ś			Ϊ			•			V.					/											•	
																	0																											
	•					•	•			•	•										•	•		•	•					•	•	•		•		•		•	•			•	•	•
	•				•	•	•			•	0	0			•				•	•	•				•	•			•	•	•	•	•	•				•	•			•	•	•
	•	0	0		•	٠	٠				•			•	•				0	0		•		•	•	0		•	•	•	•	•	0	0				0	0	•			•	0
	•	0	0		•	0	0							•	•	0			0			•		0	•		•	•	۰	•	•	•		•		•		0	•		•		•	•
•	•	0	0	•	0	٠	٠	۰		0	0	0	•	•	٠	۰	•	0	0	0	•	٠		٠	0	0	•		•	٠	•	0	0	0	•	•	٠	0	•	•			•	0
٠	0	0	0	•	•	۰	٠	٠	۰	0	0	0	0	٠	٠	٠	۰	0	0	۰	۰	٠		٠	0	0	٠	•	•	۰		0	0	•	۰	•	٠	0	•	•	•	•	۰	۰
•	٠	٠	۰	•	٠	٠	٠	•	٠	۰	۰	0	•	•	•	•	•	۰	۰	٠	•	٠	٠	•	۰	•	٠	٠	٠	٠	٠	•	•	٠	•	٠	•	۰	٠	٠	•	٠	٠	۰
٠	•	۰		٠	۰	۰	۰	*		۰	۰	۰	۰	٠	٠	٠	٠		0	۰	۰	٠	۰	۰	۰		٠	۰	٠	٠	۰	•	•	۰	٠	٠	•	•	۰	٠	•		•	۰
۰	•	0	0	۰	•	۰	۰	۰	•	0	0	0		۰	۰	۰	•	0	0	0	۰	۰		۰	•	0	•	•	۰	۰	•	0	0	0	•	۰	۰	0	۰	۰	•	•	•	0
٠	۰	0	0	٠	0	٠	٠	٠	٠	۰	۰	۰	۰	٠	٠	٠	۰	0	0	۰	٠	٠	۰	٠	٠	0	٠		۰	۰	٠	•	0	•	۰	٠	•	0	۰	۰	٠	٠	٠	۰
٠	0	٠	٠	٠	٠	٠	٠	٠	۰	۰	۰	•	۰	٠	٠	٠	٠	۰	۰	٠	٠	٠	٠	٠	٠	۰	•	٠	٠	٠	٠	•	٠	٠	٠	•	٠	٠	٠	٠	•	۰	۰	۰
					•	•				•					•	•								•	•				•			•		•	•				•				•	•

0	0	۰		•	0	0	۰	•	•	0	0	0	۰	0	۰	۰	0	0	0	0	•	۰	•	0	۰	0			۰	۰	0	•		0	۰	•	0	•	۰	0		•		•
•	•	•	•	•	•	۰	۰			۰	•	•	•	•	۰	۰	•	۰	•	•	٠			•	۰	0	•	۰	۰	۰	0		۰	•	۰		•	٠	٠	•		٠		0
۰	٠	٠		٠	۰	٠		•		٠	۰	٠		•	٠		•	•	۰	۰	٠		•	٠	•	•	•	•	•	•	•	•	•	٠	•		•	•	•	•	•	٠	•	•
	•	٠				•	•			۰	•	٠			٠	۰	•		•	•				•	•	•			۰	0	•			•	0			۰	۰	•		۰	٠	
0	•	•	•		•	•	•			0	•	•		0	•	•	•	•	0	•	۰			•	•	0	•		•	•	•			•	۰		•	•	•	•				0
0	•	0			•	•	•		۰	0	0		•	0	0	•	0	•	0	•	۰	•		•	۰	0			•	۰	0			•	٠	•	•	•	۰	0	•	•		0
0	•	0		•	•	•	۰			۰	•	•		0	۰	۰	•		0	•	۰		•	•	۰	0			•	۰	0			•	٠			•	۰	0		•	۰	٠
0	۰	۰		•	•	۰				٠	•	•		0	٠				•	•	٠			•	•	•			•				•	•	•				•	•		•	•	•
	•	•				•				•	•	•				•				•				•	0				•	0				•	0				•					0
	•	•			•	•				0	۰		∕Vi	th	а	COI	mp	Jul	tei	Γ	• •			•	•	•	•		•	•	•			•	۰		•		•	•				0
	•	•		•	•	•				•	•										۰			•		•			•		•			•	٠		•			•				
•	•	0			•	•	•			٠	•	•		0	•	•	•	•	0	•	٠			•	•	0			•	•	0			•	٠		•	•	•	0			•	•
0	•	•				•				٠	•			0					0	•				•	•				•	•				•								•		
0	•	•				•					•	•		0					0	•				0	•	0			•	•				•	•			•	•	0		•	•	•
0	•	•				•	•			۰	•	•		0	•	•			0	•	۰	•		0	•	0			•	•	0			•	•			•	•	0				٠
•	•	•		•	•	•				•	•	•		•	•				•	•	•			•	•	•			•	•	•			•	•		•		•	•		•		
•	•	•			•	•				•	•	•			•				•	•				•		•			•					•						•		•		
						•				0										•	•			•	•				•	•				•	•				•					
	•	•				•				•	•					•	•			•	•			•	•				•	•				•	•				•	•				
0	•	0				•	•				•			0	•				0	•				•	•	0			•	•	0			•	•				•	0				
	•	•			•	•	•			•	•					•				•	•			•	•	0			•	•	0			•	٠							•	•	

Step 2(c): In a spreadsheet, compute prob of every possible combination of outputs for all vars

" JONT DISTRIBUTION TABLE"

B:	Barking 🕨	D: Doorbell	A: Alarm	T: Thief	E: Eartho	µu∌ F	P(BDATE)
b0		dO	a0	tO	e0		0.7524
b0		d0	a0	tO	e1		0.03168
b0		d0	a0	t1	e0		0.00304
b0		d0	a0	t1	e1		8E-05
b0		dO	a1	tO	e0		(
b0		dO	a1	tO	e1		0.00396
b0		dO	a1	t1	e0		0.00228
b0		dO	a1	t1	e1		0.00016
b0		d1	a0	tO	e0		0.03762
b0		d1	a0	tO	e1		0.001584
b0		d1	a0	t1	e0		0.000152
b0		d1	a0	t1	e1		4E-06
b0		d1	a1	tO	e0		(
b0		d1	a1	tO	e1		1.98E-0
b0		d1	a1	t1	e0		1.14E-0
b0		d1	a1	t1	e1		8E-07
b1		dO	a0	tO	e0		(
b1		d0	a0	tO	e1		(

COMENIA

•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	٠	•	•	•	•	•	•	•	•	•	٠
•	•	•	•	•	•	•	•	٠	•	•	•	•	•
•	•	•	٠	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•
•)	2	. 0		•	•	0	•	•	•	•	•	•
. \	·- `		9.C		•	•	•	•	•	•	•	•	•
0	•	0	•	•	•	•	0	•	•	•	•	•	0
	•	0	•	•	•	•	0	•	•	•	•	•	•
•	•	•	•	•	•	•	•	٠	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	٠
•	•	•	•	•	•	•	•	•	•	•	•	•	•
•		•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•

PRODUCING Q JOINT TABLE ITENATIVELY X D.

									_
• •	•	•		•	•	•	tO	t1	
0 0	0	۰		•	۰	۰	.99	.01	
• •	0	0			۰	۰			\sim
0 0	٠	٠	•	*	۰	۰			(т
• •	٠	۰	0	۰	۰	۰			
• •	•	•	•	•	•	•			
	•							a0	a1
• •	•	٠	•		•	•	t0, e0	1	0
• •	•		•	•	•	٠			
• •	•	٠	0		•	•	t0, e1	.8	.2
• •	۰	۰	0	۰	۰	۰	t1, e0	.4	.6
0 0	۰	۰	0		۰	۰			
• •	٠	٠	0	۰	۰	۰	t1, e1	.2	.8
• •	•	•	•	•	•	•			
	•								
	•				•	•			

. .

. .

. . . .

. .

. . .

. .

. .

PRODUCING SOINT TABLE (ADDING INDEPENDENT NODES) SINCE TIE ARE INDEPENDENT .95 Thief Earthquak P(TE) = P(T)P(E)Alarm Doorbell $T \in P(TE)$ Barking (Dog) t1, e1 .2 a0. d0 0 00 .99 • 95 99 .05 ei Co | .01.95

PRODUCING JOINT TABLE (DEPENDENT NODES)) Yo YI THESE ARE Xo 1130/3 & P(Y|X) XI 1143/4 NALVES $\left(\begin{array}{c} \mathbf{x} \\ \mathbf{x} \end{array} \right)$ Since Y DEPENDS ON X P(x y) = P(y|x) P(x) $(\mathbf{1})$

	• • • • • •	• •	
		• •	In Class Exercise (don't submit):
	e0 e1 95 .05	• •	Build the joint distribution table for the bayes net on the left.
	d0 d1 .8 .2	• •	(You needn't submit for credit. You can check your work with the given final answer csv on website)
t0, e1 .8 .2 t1, e0 .4 .6	b0 b1	• •	
t1, e1 .2 .8	a0, d0 1 0	0 0	
	a0, d1 .2 .8	• •	
٥	a1, d0 .5 .5	• •	
	a1, d1 .01 .99	• •	
P(T, E) = P(T E) P(E) = P(T P(A, T, E) = P(A T, E) P (T,) P(E) E)	0 0 0 0	· · · · · · · · · · · · · · · · · · ·
P(D A T E) = P(D A T E) P(A P(B D A T E) = P(B DATE)	A T E) = P(D) P(DATE) = P	P(A T (B DA	E) (D is independent)) P(DATE) (B is conditional independ TE given DA)

MARGINALIZING IN X Y Z) Pros SOINT TROLE (step 3c) Xo Yo Zo 14 COMPUTE P(XOZO) · X. · · Y. Z. · | · O Ko Y Zo O $= \leq P(x_0 \mid z_0)$ Xo Y1 Z1 1 1 10 3/8 ×, · ×, Zo · $= \rho(x_0 Y_0 Z_0) + \rho(x_0 Y_1 Z_0)$ X, Y. Z, O X, Y, Z. 0 + O = '(q = '14 X1 Y1 Z1 1 44

MARGINALIZING IN X Y Z) Pros SOINT TROLE (step 3c) Xo Yo Zo 1 . 44 QUICK PRACTICE X. Yo Z. \bigcirc COMPOTE P(Y, X,) Ko Y Zo 0 $= P(X_1Y_1Z_0) + P(X_1Y_1Z_1) = 1/4$ · · · B Xo Y Zi 3/8 x, y, Zo COMPUTE P(XO) = P(XOYOZO) + X_1 Y_0 Z_1 X1 Y, Z. 0 XI YZI 14 4 ((* 1, 2,)

Putting it all together:	· · · · · · · · · · · · · ·	· · · · · · · · · · · · · · ·
Step 1: Rewrite conditional probability Step 2(c): In a spreadsheet, compute pr Step 3(c): Compute the needed probab	ob of every possible combinat	
Example:		
Given alarm is going off and dog is bark	ing, what is the probability of	a thief?
$ \Im p(t, a, b) = $	P(t, a, b)	= .0036478 / .009568 = .381
	P(a,b,)	· · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · ·	

In Class Exercise 3:	· · · · · · · · · · · · · · · · · · ·
Explicitly compute each of the following	· · · · · · · · · · · · · · · · · · ·
1. What is the prob of thief? $P(t_1) = .01$ 2. Given that alarm is going off, what is prob of thief? $P(t_1) = .01$	(1) P(tion)
2. Given that alarm is going off, what is prob of thief?	$f(\alpha) = \frac{1}{P(\alpha)} = .381$
Given that alarm is going off & dog is barking, what is prob	of thief? .38 ((SEE PREN)
4. Given that alarm is going off, dog is barking & earthquake,	what is prob of thief?
Answer each question below with one sentence (please avoid appeal to our intuition):	
- Why is the prob of 2 greater than the prob of 1? - Why is the prob of 3 equal to the prob of 2? - Why is the prob of 4 less than the prob of 2? P(+i) a, b	$\rho(t_1, \alpha, b_1, e_1) > 0$
- Why is the prob of 4 less than the prob of 2? Y (Ti) a, v	$\left(\begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \right) = \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $

•	How do we compute conditional probabilities from a Bayes Net?
0	With a computer: Step 1: Rewrite conditional probability without conditional Step 2(c): In a spreadsheet, compute prob of every possible combination of outputs for all vars Step 3(c): Computer the needed probabilities from step 1 via marginalization
• • •	With algebra: Step 1: Rewrite conditional probability without conditional Step 2(a): rewrite each conditional probability using only probabilities given in Bayes Net - add variables via marginalization P(A) = \sum b P(A, b)
0	- factor joint distributions into given conditional probabilities: P(A, B) = P(B A) P(A) - utilize given independence relationships between variables
0	P(A, B) = P(A) P(B) Step 3(a): plug in values

•	•	Ĉ	بر		V Ç) ප	Tá	5	•	•	•	P		3.0	\$).	•	•	0	r.	B	•	4	د را	\Q	M	•	IS		.0	FF			0	•	• •		0	0	•	0	0	•
															7					•							1	tO	t1	L							e	D	e1				
0	•	•				0										0					0				•	t.	1	.99	.0	1							.9	5	.05				
0		•				0	•				•	•				0					0			•	•	¢				7			1	[$\overline{\mathbf{N}}$						•
•	٠	٠			٠	•	•			٠	٠	•							٠	•	0			٠	٠	4						nief	ノ	Ľ	artn	quak	e		(d 0 d	d1		٠
0	٠	۰	٠			0	۰			٠	٠	٠	0	0		0		0		0	0	٠	٠	0	٠	ŧ			a0		a1	3	5	-						.8	.2		•
	0	0				0	۰				0		0		0	0	0			0	0	٠	٠	۰	0	÷	t0	e0	1		0	(Alar	rm		(Doo	orbel)				۰
۰	۰	0	۰	٠	۰	۰	٠	٠	٠	۰	0	0	٠	۰	٠	۰	٠	٠	۰	۰	۰	۰	0	۰	۰	¢			.8		.2			~			\sim						۰
۰	٠	٠	٠	٠	٠	0	٠	٠	٠	٠	٠	٠	٠	۰	٠	٠	٠	٠	٠	٠	0	٠	٠	۰	٠	¢		e0			.6					king	\			b0	b	1	٠
0	٠	٠	٠	۰	٠	0	۰	•	*	٠	٠	٠	۰	•	۰	۰	۰		٠	۰	0	٠	•	۰	٠	t		e1			.8			(Баг (D	og))	a0	d0	1	0		۰
0	•	۰	•		•	0	۰			•	۰	٠	0	0		0		0	•	0	0	•	•	•	•	ł												a0, a0,		.2	0		•
	•	•				•	•				•				•	•				•	•				•	4														.5		_	•
																																							d1	.01			
0	•	•				0	•				•	•			•	•				•	0			•	•	0		•	•	•					•				•	•			•
0	•	•	•			0	•			•	•	•	0	0	0	0	0	0	•	0	0	•	•	0	•	0			•	0	0	• •			•				•		0	•	0
0	•	۰	•		•	0	•	•	•	•	۰	۰	0	0	0	0	0	0	•	0	0	۰	•	0	۰	0		•	•	0	0	• •			•	• •		,	•		0	•	0
•	٠	٠	•	٠	٠	۰	•	٠	٠	٠	٠	٠	٠				٠	٠	٠		0	•	•	٠	٠		٠	٠	•	•	•	• •		•	•	• •	•	•	•	٠	٠	•	٠
•	٠	٠	٠	۰	٠	0	۰	٠	٠	٠	٠	٠			•	0		۰	٠	0	0	٠	٠	۰	٠	0	٠	۰	۰	•	•	• •		•	•	• •	•	•	۰	•	۰	٠	۰
		•				•	•				•				٠						•			۰	۰			٠	٠	•		• •		•	•	• •					٠	٠	

 $P(a_{\bullet}) = \Sigma P(a_{\bullet} + e)$ t1 e1 .99 .01 $= P(a_{\circ}|t_{\circ}e_{\circ})P(t_{\circ})P(e_{\circ})$.95 .05 . . . Earthquake (Thief) . . . $p(a_{o})$ to $e_{i}) p(t_{o}) p(e_{i})$ Doorbell Alarm t0, e0 1 . . $P(a_o | t_i e_i) P(t_i) P(e_i)$. . . t0, e1 .8 .2 t1, e0 Barking (Dog) b0 b1 $P(a_{o}|t,e_{i}) P(t_{i}) P(e_{i})$ t1, e1 .2 .8 a0, d0 1 0 a0, d1 .2 .8 $= | \cdot (.99)(.95) + .8(.99)(.05) \\ + .4(.01)(.95) + .3(.01)(.05) = .984$ a1, d0 .5 .5 • • • a1, d1 .01 .99

•		Ċ	بر	.	V Ø	୦୦	ri Ti	5	•	•	•	P(D 0).	•		6	R •	B	•	Q) G	•	2	5		Š.	e.e	10	6)	0	0	•	0	0	0	0	•	• •	•
																				•								tO	t1	L							e0	e	e1			
	•						0																			¢.	- 1	.99	.0	1						- 1	.95		05			
•	•	•		0		•	•	0		•	•	0	0		•					•	•	0				¢				7				[`					•
0	•	•		0	•	•	•	0		•	0	0	0	•	0	•		0	•	۰	•	0		•	•	¢					Th	ief)	Ea	rthq	uake)		d	0 0	11	•
•	•				•	0		0			•		0		•	•				•						¢			-			-		Ĵ						8.	2	0
	•	۰		0		0	•	0			•	0	0		•	۰			0	٠		0				¢.	40	- 0	a0		a1	\mathcal{C}	٩lar	m			oor	bell				0
•	•	0			•	•	0	0			۰	0		٠	•	•				۰					•	÷		e0	1	(C.		/		Ľ						•
•	•	٠			•	•	٠				•				•	•				٠	•	•				¢			.8		2				5	4						
0	•	٠			•	•		•			•		•	•	•	۰	•	0	•	٠	•	•	٠	٠	٠	¢		e0	.4		6			(Bark	ing				b0	b1	
•	٠	0			•	•	۰	۰			٠	•	۰	٠	٠		•		•	٠	•					ŧ.	t1,	e1	.2		8				(Do	g)	1	a0, c	dO	1	0	
0	•	۰	•	0	•	•	•	0			•	0	0	۰	•	۰	•	0		۰	0	0		۰	۰	ŧ											1	a0, c	d1	.2	.8	
•	۰	0	٠	۰	•	•	•	۰			۰	۰	۰	•	۰	٠	۰	۰	•	۰	٠	٠	٠	•	٠	¢											i	a1, c	dO	.5	.5	•
•	۰	٠	٠	0	۰	•	•	0	٠		۰	0	0	٠	۰	٠	٠	0	•	٠	0	0	٠	٠	٠	4											i	a1, c	d1	.01	.99	
۰	٠	٠	٠	۰	٠	۰	٠	۰	٠	٠	٠	۰	۰	٠	٠	٠	٠	0	۰	٠	٠	٠	•	٠	٠	۰	•	٠	٠	٠	•	• •	٠	٠	٠	۰	٠	٠	٠	٠	• •	۰
0	•	0	٠	0	0	0	•	0	۰	0	0	0	0	۰	0		•	0	0	۰	0	0	٠		0	0		•	۰	0	•	• •	0	0	•	0	۰	۰	•	۰	• •	0
•	۰	۰	۰	۰	•	۰	0	•	۰		۰	0	•	۰	۰	۰	۰	۰		۰	0		٠	۰	۰	۰		•	•	۰	•	• •	•	•	•		۰	۰	•	٠	• •	۰
0	۰	۰		0	•	•	۰	0	٠	٠	۰	•	0	۰	0	۰	۰	0	•	٠	۰	۰	۰	۰	۰	0	•	•	٠	۰	•	• •	•	۰	•	0	۰	۰	۰	٠	• •	•
۰	۰	۰	٠	0	•	۰	٠	0	٠	٠	•	0	0	۰	0	۰	۰	0	۰	٠	۰	•	٠	٠	٠	0	۰	•	٠	۰	•	• •	۰	۰	•	0	۰	۰	•	٠	• •	0
۰	۰	٠	۰		۰	۰	•		*	٠	۰			٠	۰	٠	٠		•	٠	•		۰	٠	٠			٠	٠	٠	•	• •	۰	٠			۰	•	٠	•	• •	•

SKIP $\mathcal{P}(b_{\bullet}) = \mathcal{P}(b_{\bullet}, ad)$ t1 e0 e1 .99 .01 .95 .05 = $P(b_0 | a. d_0) P(a_0) P(d.)$ Thief Earthquake $+P(b_{o}|o.d_{i})P(a_{o})P(d_{i})$ a1 0 Alarm Doorbell a0 t0, e0 1 $+ P(b_{\circ} | a, d_{\circ}) P(a,) P(d_{\circ})$ t0, e1 .8 .2 t1, e0 .4 . . . Barking (Dog) b0 b1 + P(b. | a, d.) P(a,) P(d.) t1, e1 .2 .8 a0, d0 1 a0, d1 .2 .8 $= \left(\begin{pmatrix} .884 \\ .894 \end{pmatrix} \begin{pmatrix} .8 \\ .8 \end{pmatrix} \\ \begin{pmatrix} .2 \\ .901 \end{pmatrix} \\ \begin{pmatrix} .916 \\ .916 \end{pmatrix} \\ \begin{pmatrix} .916 \\ .916$ a1, d0 .5 • • • • .5 a1, d1 .01 .99

ONDER NODES SO THAT IF EDGE XIY EXISTS THEN X IS IN LIST BEFORE Y A, B, C IS TORO SONTED B = 0 K A, C, B IS NOT TORO SONTED	EXTRA : N TOPOLOGICAL	Dot on 4n Sont	or c	QUIZ DIRECTE	D GRADW	•
	ONDER	NODES	So .	TUAT IF	EDGE X,Y	•
		- - - - - - - - - - - - - - - - - - -	B,C	(5 TOP	o Sonteo	0 0 0
					ot Topo Sonter	· · ·