CS 2810 Day 1 Jan 18

Data Models

- what it takes to build a good one

Admin

- ask me anything about administration of course

Linearity
Gauss Jordan Elimination (beggining)

What is prob someone in class is exposing the rest of us to covid, right now?
Assume:
-100 peope in this room

- prob contraction is uniform per person
- one who tests positive is contagious for 7 after test
how to get prob contracting covid "use the average rate in Mass"
- 7 million people in Mass
- 20k new cases a day

$$
\rho=\frac{00 k}{7000 k} \cdot 7
$$

ICA 1: Discuss whether you trust the model, and identify 2-3 most important assumptions which you disagree with

Critiques:

(should be lower)
NU covid stats don't match Mass stats
NU is insulated because students interact among themselves (mostly.)
NU testing: if you tested positive, you're staying home
(should be higher)
testing rate doesn't count people who are positive, but haven't been tested

- false negative on testing
mixing globally, we pull covid from all corners of earth (beggining of semester)
(generally wrong, not necessarily that estimate is too high or low) uniform probability of contracting covid

what it takes to build a "good" data model
- a breadth of model models to choose from in one's mental library
(we'll learn about many models from linear algebra \& prob/stats)
- the ability to be creative / rigorouus in making and evaluating assumptions
- how "false" are my assumptions?
- is model strong enough to draw conclusions on?
- a keen sense of which aspects of the application we seek to model most accurately
"all models are wrong, some are useful"

Linearity (Intuitive Definition: use this one to understand meaning)
A function is linear if
scaling, applied before or after the function, has equivilent effect

ADDition Befooe fne

$$
\begin{aligned}
f\left(x_{0}+x_{i}\right)=f(1+4) & =f(5) \\
& =10
\end{aligned}
$$

ADoition After fuc

$$
\begin{aligned}
f\left(x_{0}\right)+f\left(x_{1}\right) & =f(1)+f(4) \\
& =2+8 \\
& =10
\end{aligned}
$$

Linearity (working definition: useful to prove something is / is not linear) A function is linear if:

For ANy $\alpha, \beta \in \mathbb{R}$ Sineots to of

$$
\begin{aligned}
& x y \in \operatorname{Doman}(f) \\
& f(\alpha x+\beta y)=\alpha f(x)+\beta f(y)
\end{aligned}
$$

Goan: Poure a foncrwon is LINEAR

$$
f(x)=10 x
$$

CHoose $\alpha \beta \in \mathbb{Z} \quad$ choose $\quad x_{1} y \in \operatorname{Domand}(f)$

$$
\begin{aligned}
f(\alpha x+\beta y) & =10(\alpha x+\beta y) \\
& =\alpha 10 x+\beta 10 y \\
& =\alpha f(x)+\beta f(y)
\end{aligned}
$$

Goac: Parouso Somemino is Now-Livern

$$
\begin{aligned}
& f(x)=x^{2}
\end{aligned}
$$

Why all the fuss about defining a "linear". equation?

TLDR:

many real world things are linear, some that may not seem linear can be re-cast as linear

- with this class of equalities, it is possible to either.
- find all solutions of a set of equalities
- find value which gets "closest" (line of best fit)
- the infite linear function outputs are all defined by the linear system's behavior on a set of basis inputs
- all linear functions can be expressed as matrix multiplications

Solving system of linear equations
definition: system of linear equations is a set of linear function equations solutions satisfy all equalties

$$
\begin{aligned}
& x=0 \quad x=1 \quad y=-1 \quad z=1 \quad \text { A socuriod? } \\
& x+y=0 \text { No } \\
& 2 x-y+3 z=3 \times 2 \cdot 1=0 \\
& x-\partial y-z=3
\end{aligned} \quad \begin{aligned}
& \partial+1+3
\end{aligned}
$$

1CA 2
Solve the previous linear system using any method known from your algebra experience
$x+y=0$
$2 x-y+3 z=3$
$x-2 y-z=3$
Thinker:
How might you teach a computer to solve every possible linear system?
(no matter what coefficients are given to $x ; y ; z$ and constant they're equal to, your method provides a solution)

Souning cinear SHETEM We "TraNSFORM SYSTEM TO Another system with tafe

$$
r_{0}: x+y=0
$$

$$
r_{1}: 2 x-y+3 z=3
$$

$$
r_{3}: x-2 y-z=3
$$

(1) Scait A Row

$$
\begin{aligned}
& \partial x+\partial y=0 \\
& r_{0}^{\prime}=2 x-y+3 z=3 \\
& x-\partial y-z=3
\end{aligned}
$$ SAME SOUTION)

$$
r_{0}^{\prime}=r_{1}
$$

$$
r_{1}^{\prime}=r_{0}
$$

(2) Sum two Rows (3) Swap two nows

$$
x+y=0
$$

$$
3 x+3 z=3
$$

$$
\begin{gathered}
2 x-y+3 z=3 \\
x+y=0 \\
x-2 y-z=3
\end{gathered}
$$

