CS 2810 Day 7 Feb 8 2022	· · · · · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · ·
Admin: ICA in notes			• • • • • • • •
Describing a set of vectors:			
-span -linear (in)dependence			
· · · · · · · · · · · · · · · ·	• • • • • • • • • • • • •	() () () () () () () () () () () () () (• • • • • • • •
	· · · · · · · · · · · · · · · · · · ·		
		-60-	
· · · · · · · · · · · · · · · · · · ·			
· · · · · · · · · · · · · · · · · · ·			
		y	
· · · · · · · · · · · · · · · · · · ·			

An astronaut is spinning in out spaceship needs impulse b= [they use with their boosters a_	er space and needs to stop before 10, -11, 0]^T to stop rotating, what _0, a_1, to stop?	e they get dizzy! Their control signals x_0, x_1 should
$b = \begin{bmatrix} 0 \\ -0 \end{bmatrix} \begin{array}{c} \chi_1 & -3 \\ \chi_1 & 0 \end{bmatrix} $	3];]=];]]	$x_{0} = x_{0} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
		×1.
		The t

 $A_0 + X_1 A_1 = 10 \begin{bmatrix} 0 \\ 0 \end{bmatrix} - 3 \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} -3 \\ 0 \\ 0 \end{bmatrix}$ $\begin{bmatrix} \mathbf{n} \\ \mathbf{n} \end{bmatrix} = -11 \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix} + 10 \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ -11 \\ \mathbf{0} \end{bmatrix} + \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix} = \begin{bmatrix} 10 \\ -11 \\ \mathbf{0} \end{bmatrix}$

Span [and its rocket ship connection] The span of a set of vectors a_0, a_1, a_2, is the set of all vectors which can be written as a linear combination													
$SPAN(\vec{a}_{0}, \vec{a}_{1}, \vec{a}_{2}) = \{\chi_{0}\vec{a}_{0} + \chi_{1}\vec{a}_{1} + \dots \mid \chi_{i} \in \mathbb{R}\}$													
[The span of boosters a_0, a_1, a_2 are an the impulses that they could possibly creat	el												
· · · · · · · · · · · · · · · · · · ·	• • • • • •												
	• • • • •												
	• • • • •												

ICA 2	SHADE THE	SPAN 537+ X1	of Each	SET OF	VECTORS
XoQo			0 2 7 - 2 2 7		0,5 4
ANY VAL	0			5-1	A
				مة (أ) 	
•			0.0-[3]		

	••••••••••••	
	• • • • • • • • • • • •	· · · · · · · · · · · · · · ·
		 Γ, Γ, Γ, · · · · · · · · · · · · · · · ·
		 701'+411'
	avel	
	$a_{p} \mathcal{T}()$	
. – (
	• • • • • • • • • • • • •	
· · · · · · · · · · · · ·	• • • • • • • • • • • • •	
	• • • • • • • • • • • • •	

ICA 3: Which of the rockets below is capable of producing any rotation $\sqrt{b} = [b_0, b_1, b_2]^T$ while costing the least amount of money? What conditions must a_0, a_1, a_2, meet so that the rocket can produce any rotation?
Rocket B can produce all rotations and it doesn't have any "wasted" boosters which don't do anything new
Rocker A (\$3) Rocker B (\$3) Rocker C (\$5)
$a_{o} = \begin{bmatrix} o \\ o \end{bmatrix}^{2} a_{1} = \begin{bmatrix} b \\ o \end{bmatrix}$ $a_{o} = \begin{bmatrix} o \\ o \end{bmatrix}^{2} a_{1} = \begin{bmatrix} b \\ o \end{bmatrix}$ $a_{o} = \begin{bmatrix} o \\ o \end{bmatrix}^{2} a_{1} = \begin{bmatrix} b \\ o \end{bmatrix}$

 $\begin{bmatrix} i \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} i \\ 0 \\ 0 \end{bmatrix} + 2\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + 3\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$. .

				•	•		•	• • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		•	• • • • • • • • • • • •	。 。 。 。	· · ·	•	• • • • • • •	• • • • • • • • • •					•			· · · · · · · · · · · · · · · · · · ·		103]	•									•	• • • • • • • •	• • • • • • • •	• • • • • • • • •
• •		0	0		۰	0			0	ŀ			0	0	۰		•		0	0	0	0	0	0	0	0	0			0		•	0	0	0	0	•	0	•	0	0	•
• •	•	•	•	•	•	•	•	•		V	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•
• •	•	0	•	٠	٠			•	٠	٠	٠	•	٠	٠	٠	•	•		•	•		•	•	٠	•	•	•		•	•	٠	۰	٠		•	٠	•	•	•	•	•	•
• •			٠	٠	۰	•	۰		۰	۰	٠			•	٠		۰	٠	۰			•		۰	٠	•	-		•	٠	٠	۰	٠		٠	۰	٠		٠	•	•	٠
• •			٠		0	0	0		۰	0	0	۰		•	0				0			•		•	•	•	•			•			٠		٠	۰	0	•		۰	•	۰
• •	•	٠	٠	٠	٠	٠	۰	٠	۰	٠	٠	٠	٠	٠	٠	۰	۰	٠	۰	۰	۰	٠	٠	۰	٠	٠	•		•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
• •	•	۰	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	۰	۰	٠	٠	٠	۰	•	٠	٠	۰	٠	•		•	٠	٠	۰	٠	٠	٠	٠	٠	۰	٠	٠	٠	٠
• •										•					•				•					•		•			•								•			•	•	•

Linear depende	ence (definitic	on 1 of 2)	· · · · · · · · · · · · · · · · · · ·		• • • • • • •
We say that a sa a linear com	set of vectors bination of th	a_0, a_1, a_2, e others:	, is linearly c	dependent if some vector can be writt	ten
THERE	Exists	Xick	war	$a_0 = \chi_1 a_1 + \chi_2 a_2^+ \cdots$	0 0 0 0 0 0
[Linearly deper created by the	ndent booster other booster	s are wasteful rs]	they produc	ce an impulse which could've been	ul.
	• • • • • •			۲. ۲	<u>.</u>
	• • • • • •	· · · · · · · ·	· · · · · ·	ar[?]	• • •
• • • • • • •		• • • • • • •		· · · · · · · · · · · · · · · · · · ·	• • •

•	•	•	•	•	• •			•	•	•	0	•	•	0	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
· L	ine	ea	r d	ep	er	nde	en	ce	e" (0	de	efir	niti	or	۱2	0	f 2) •	•		٠	٠	۰	٠	٠	٠	۰	۰	٠	٠	٠	٠	۰	•	٠	٠	٠	٠	٠	٠	۰	٠	•	٠	٠
	•	•	•	• -	• •			•	•	•	•		•		•	•	•	•	•	۰	۰		۰	۰	۰	•	•	٠	۰	۰	•	•		۰	۰			۰	۰	•			۰	•
۰W	le	Sa	ay	tha	at a	a s	set	t o	fν	/e	cto	ors	s a	(), a	a_	1;	a_	2,	•	. is	s lii	ne	arl	y (de	pe	nc	ler	nt i	ftl	ne	re	e	xis	ts	SO	m	е	0	•	•	۰	•
° S	ca	lar	ŝ	x (0, :	X	1,	·	. (r	no	ot a	all	ec	านส	al t	to	ze	ro) °v	vitł	า:	•	٠	۰	•	•	•		•	٠	٠	•		٠	٠	٠		٠	٠	•	•	٠		٠
•	•	•	•	•	• •	_	, í	•	• `	٠	٠	•		•	٠	•		•	•	٠	•	•	•	•	٠	•		٠	٠	•		٠	٠	٠	•	٠		٠	٠	•	•	•	٠	٠
0	•	•	•	•	• •			•		÷	0	0	•	0	0	0	0		•	•	0	0	•	•	•	0	•	•	•	0	•	0		0	•			•	۰	0			•	0
0	•	•	•	•	• •			•	0	•	٠	0		0		•			•	•	-		•	•	•		•		•	•	•			•	•			•	•	0			•	۰
	•	0	•	•	. 7	1		•	•	•	•		•	Ξ	-	•	÷	•	<u> </u>	•	2		4	•	0	•	•	•		•	•			•	•			•	0	•	•		•	٠
•	•	•	•	•	. (Ĵ)	. 2		•		Ke) ·	G	Lo	-	-		Ņ	ι. '	Ч,	- (•		•. •	•	•		٠		•	•	٠	•			•	۰	•	•			
•	•	•	•	•	• •			•	•	•	•			٠	•	•				٠	•	•	•	•	٠	•		•		٠		•	•	٠	•			•	٠	•	•		•	
	•	•	•	•	• •			•	•	•	٠					•				•	•	•	•	•	۰	•			٠	•			•	•				٠	٠	•			4	٠
	•	•	•	-	• •			•	•	•	•					•				•	•			•	•	•												•	۰	•		1	1.	
	•	•	•	•	• •			•	•	•	٠	•				•				۰	•	•	•	•	۰	•	•			٠	۰		•	٠	۰			•	•	•	Q:	ب ا	ł	
•	•	•	•	•	• •		, ,	•	•	•	٠			٠	٠	•				٠	•	•	•	•	٠	•	•	•		٠		•	•	•	•			•	-	•	. 1	2		
•	•	•	•	•	• •			•	•	•	٠			٠	•	•				٠	•	•	•	•	۰	•		•	٠	٠		•	•	٠	•			.50	7.	•			•	٠
	•	•	•	•	• •			•	•	•					۰	•			۰	۰	•			•	۰					•				•	•		Ø	٤Ц	<u>مر</u> :	1			•	
	•	0	•	•	• •			•	•	•	0				•	•	•		0	0	•			•	0	•		•		•	•			•	•	-	_		-+	4			- -	•
•	•	•	•	•	• •			•	•	•	٠			•	٠	•	٠			۰	•	•	•	•		•	•			٠		•	•	٠	٠			٠		-	00	6		
٠	•	•	•	•	• •			•	•	•	٠			٠	٠	•	٠	٠	٠	٠	•	•	•	٠	٠	•	٠	٠	•	٠	•	•	٠	•	•		•	•		•	•		ڔ	•
•	•	•	•	•	• •			•	0	0	•	0		0	•	•			•	۰	•	•	•	•	۰	•	•			0	•	0		0	0			۰	٠	١.				0

۰	۰	۰				۰	۰				۰	•	•			۰	•				•				•				•	•	•			•	•		•	•	۰	۰	•		۰	•
	•					•				٠	•					•	•		•	•					•				•					•					•				•	
						•										•				•					•														•				•	
•	•		0	0		0	•	•	0	•	0	Ů	•	-		•	۰	•	•	0	•	0			•	•		•	•	0		•	•	0	•	•	0	0	0	•	0		0	•
•	•	۰		•		•	0	•	•		•		•	•	۰	٠	۰	•	•	•	•				۰	۰			۰	•		•	•	•	۰				•	•	•		•	•
						•	•			•							P	•	•	0					٠				٠			•		•	•				•				•	
	•					,				•		4			•	X	-			•					•				•					•	•			•	•				•	•
												1																																
•	•	•		•		•	•	•	•	•	•		~			•	•	•	•	•	•		•	•	0	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•
	0	•		•	•	•	•	•		•			1		•		*	*	•	*	•	•			۰				0	•	0		•	•	•			•	•				•	•
•	•	•		•	•	۰	۰	•	0	0	•			•	0	-			_	÷			0	-	۰	۰			۰			•	•	•	۰	•			•	۰			•	•
					e	•	-				0		0				· .	•	•	•)	•									•					•				•	•
						_																																						
۰	۰	۰	•	•		-	•	•	•	•	۰	•	•	•		•	•	-	•	۰	۰			•	۰	۰	•	٠	۰	۰	•	•	٠	۰	۰	٠		•	۰	۰		•	۰	۰
•	۰	•	0	0	•	•	۰	•	0	0	۰	•	•		•		•	-	0	0	۰	0	•	•	۰	۰	•	۰	۰	0	•	•	•	0	۰	۰	0	0	0	•	0		0	0
						•	•				•		•				•		•	•					۰				•					•	•				•				•	•
	•						>.									•				•									•					•	•				•				•	•
•	•	•	•	•	•	•	•		·		-0	•	°	•	•	•	•	•	•	•	•	•	•	•	0	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	0	•	•	•
	0			•		•	0			۰	۰		•			•	•		•	•					۰				۰	•				۰				•	•	•			•	•
•	۰	۰				•	۰				۰			۰	۰	۰	•	•	۰	۰	۰				۰	۰		۰	۰	۰			۰	•	۰	۰			۰	۰			•	•
•	•					•					•					•	•		•	•	•				•				•				•	•	•				•	•			•	•
-	~	-	-	-	-		,	-	,	,		2	,	-	-	-	-	,	-		-	,	,	,			-	-	~	-	-	-	-	-	-	-	-	-	-	-	-	-	-	,

TESTING FOR LINEAR DEDENCE	
ARE [] [O] [] LINEARLY DEDEN	57030
GOAL: FIND ALL XO XI XS WITY	· · · · · · · · ·
$\vec{O} = \begin{bmatrix} \vec{o} \\ \vec{o} \end{bmatrix} \mathbf{x}_0 + \begin{bmatrix} \vec{i} \\ \vec{o} \\ \vec{i} \end{bmatrix} \mathbf{x}_1 + \begin{bmatrix} \mathbf{y} \\ \mathbf{z} \\ \mathbf{z} \end{bmatrix} \mathbf{x}_3$	
IF ANY NON ZERO SOLUTIONS EXIST ->	LINEAR DEDENDENCE

TESTING FOR LINEAR DEPENDENCE GOAL: FIND ALL XO XI XS WITY $\vec{O} = \begin{bmatrix} 3 \\ 0 \end{bmatrix} \times_0 + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \times_1 + \begin{bmatrix} 4 \\ 2 \\ 2 \end{bmatrix} \times_2 = \begin{bmatrix} 3 \\ 1 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} 4 \\ 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} \times_0 \\ \times_1 \\ \times_2 \end{bmatrix}$ $\begin{bmatrix} 2 & 1 & 4 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 0 \\ 2 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 0 \\ -1 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 4 & 0 \\ -1 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 4 & 0 \\ -1 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 4 & 0 \\ -1 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 4 & 0 \\ -1 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 4 & 0 \\ -1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 4 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 4 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 4 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 4 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 4 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 4 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 4 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 4 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 4 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 4 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 4 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 4 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 4 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 4 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 4 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 4 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 4 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 4 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 4 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0$ row of zeros -> many solutions exist -> some non-zero solution exists -> vectors linearly dependent

TESTING	6 02	LINEAR	DEPENDENCE	
Are [a, Line	ARCY DEDENDENT?
				1. Build matrix each row is a vector from given
	· · · · · · · · · · · · · · · · · · ·		[REDUCED]	2. Row reduce to RREF
a. 0	1 02		ROW ECHELON FORM	 Inspect RREF If RREF has zero row: vecs are linearly dependent else:
				vecs are linearly independent
	o o o o			· · · · · · · · · · · · · · · · · · ·
• • • • • • •	• • • •	• • • • • • • •		

	0	۰	•		•	•	•		۰	•	0	0		•	•	•	۰		•	•	۰				•				•	•		•		۰	•	•	•	•	•	•	•		•	•
	۰	۰	0	•	•	۰	•		•	0	۰	•		•	۰	0	•	٠	•	۰	۲.	۰		1	•		•	•	۰	۰		•	۰	۰	0	•	•	•	•	•	0	٠	•	۰
۰	٠	٠	•	٠	٠	٠	۰	٠	•	٠	٠		۰	٠	7		•			`			•	ŀ	٠	۰	•	•	٠	٠	۰	•	٠	٠	٠	•	•	٠	۰	•	۰	•	٠	۰
•	۰	۰	•		۰	۰	•			۰	۰			•	•	0		U).	0	•			۰	•	•		۰	۰	•	•	۰	۰	۰	•	•	۰	•	•	•		۰	۰
•	۰	۰	•		•	۰	•			•	۰		•	•	•	•	^	(1)	0	Ģ	•	-	•	•	•		•	۰	•	•	•	۰		•	•	•	•	•	•		•	۰
٠	٠	٠	•	٠	۰	٠	•	٠	٠	٠	۰		۰	٠	•		/ ~			•	0	۶		-	•	۰	•	*	٠	٠	۰	•	٠	۰	٠	•	٠	۰	•	•	٠	٠	٠	٠
٠	٠	٠	•	٠	٠	٠	•	٠	٠	٠	٠	٠	٠	٠			Ŷ	Ų		ι.	۰			•) -	٠	•	٠	٠	٠	٠	•	•	٠	٠	•	•	٠	٠	•	٠	٠	٠	٠
۰	۰	٠	۰	٠	۰	۰	۰	٠		٠	۰	۰	۰	۰			•	٠	۰	۰	•	٠	۰			۰	۰	٠	٠	۰	۰	•	٠	۰	٠	•	۰	۰	۰	٠	۰	٠	۰	٠
	0	۰	•		•	0	•	•		۰	0	0	•	•	•	•	٠	٠	•	۰	0		•	•	•	۰	•		۰	0	•		•	۰	۰	•	•	•	•	•	•		•	۰
•	0	۰	•	•	•	0	•	۰	۰	۰	0	•	•	•	۰	•	٠	٠	•	۰	0	۰	•	•	•	۰	•		•	۰	۰	•	•	۰	٠	•	•	•	•	•	۰	٠	•	۰
٠	٠	٠	•	٠	٠	٠	•	٠	٠	٠	۰	٠	٠	٠	٠	•	٠	٠	٠	•	٠	٠		٠	٠	٠		*	٠	٠	٠	•	•	٠	٠	•	٠	٠	•	•	٠	٠	٠	٠
٠	٠	٠	•		٠	٠	•	•	•	٠	٠	٠	٠	٠	٠	۰	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠		٠	٠	٠	٠	•	٠	٠	٠	•	•	٠	٠	•	٠	٠	٠	۰
۰	۰	٠	•		۰	۰	۰	۰		۰	۰	۰	۰	۰	۰	۰	٠	*	۰	۰	٠	٠		۰	۰	۰	•	٠	۰	۰	۰	•	٠	٠	٠	•	•	۰	۰	۰	۰	٠	۰	۰
•	۰	۰	•		•	۰	•			۰	۰			•	•	•	۰		•	•	۰			•	•	•	•		•	۰	•	•	•	۰		•	•	•	•	•	•		•	۰
۰	۰	۰	•		•	۰	•	•	٠	٠	•		۰	•	۰	•	٠	٠	•	۰	0	٠	•	۰	•	۰	•		٠	۰	۰	•	•	۰	٠	•	•	•	•	•	۰	٠	۰	٠
٠	٠	٠	•	٠	•	٠	٠	٠	٠	٠	٠	٠	•	•	٠	۰	٠	٠	•	٠	٠	•	•	٠	٠	٠	•	٠	٠	٠	٠	•	٠	٠	٠	•	•	٠	٠	•	٠	٠	٠	۰
۰	٠	٠	•	•	•	٠	۰	٠	•	٠	٠	•	•	٠	٠	۰	٠	•	۰	٠	٠		•	۰	۰	۰	•	•	٠	٠	۰	•	٠	٠	٠	•	•	•	٠	۰	۰	•	٠	۰
•	۰	۰	•		۰	۰	•			۰	۰			•	۰	۰	۰	*	•	۰	٠			۰	۰	•	•		۰	۰		•	۰	۰	۰	•	•	۰	۰	•			۰	۰
•	۰	۰	•		•	۰	•			•	۰		•	•	•	•	۰		•	•	۰			•	•	•	•		•	۰	•	•	•	۰		•	•	•	•	•	•		•	۰
•	۰	۰	•		۰	۰	•			•			•	•	•	•	۰		•		٠	•		•	۰	•	•			۰	•	•	۰	۰		•	•	۰	•	•	•	•	•	۰
۰	٠	۰	•		۰	٠	•		•	0	۰	۰	•	۰	۰	•	۰	٠	۰	۰	٠	•	•	۰	۰	۰	•	•	٠	۰	•	•	۰	۰	0	•	•	۰	•	•	•	•	۰	•
	٠	٠	0		۰	٠	•			•	٠		0	•	•	0	•		•		•		0		•		•			٠	0		٠	۰		•	•	۰	•	•	•		0	•

Determine if the following set of vectors is linearly independent ICA matt@matt-yoga1:~\$ python3 Python 3.8.10 (default, Nov 26 2021, 20:14:08) [GCC 9.3.0] on linux Type "help", "copyright", "credits" or "license" for more >>> import sympy >>> x = sympy.Matrix([[1, 4, 3], [-2, 0, -1], [0, 8, 5]]) >>> x Matrix([1, 4, 3], -2, 0, -1], 0, 8. 511) >>> x.rref() 7 Eno Rou 0], (0, 1))VERENDE (INFAR

Some final, helpful facts to remember:	•		•	• •	•	• •	•	•	• •
1. The span of N vectors is never more than an N dimensional space	•			• •	•	•••	•	•	
· · · · · · · · · · · · · · · · · · ·	•	• •			0		•	•	• •
2. N+1 or more vectors of length N are linearly dependent	•	• •	0			• •	•		0 0
+ 7 - 7 - 7 - 7	•	• •	•	• • • •	•	•••	•	•	• •
$\left \begin{array}{c}1\\3\\4\end{array}\right $	•	• •	•	• •	•	• •	0	•	• •
	0	• •	0	• •	•	• •	•	0	• •
3 VECTORS OF LENGTH 2	•	• •	•	• •	•	• •	•	•	• •
	0	• •		• •		• •	۰	•	• •

