•	CS2810 Day 15							•	•
•	Admin:	•	0		•	• •		•	•
•	HW6 released today (due date Mar 22 @ 11:59 PM, no late days accepted)								
•	prob / stats calculator has new estimators / bias material from today Thank you for wearing masks!								
٠	Contenti							٠	٠
0	Content: Binomial / Poisson Assumptions (HW6 practice)	•	٠	•	•	• •	•	۰	۰
•	Observations vs Ground Truth	• •	٠	٥	0	• •		٠	٠
۰	Ectimatoro								
•	Estimators - What is a biased estimator?		•	0	0	• •	0	•	•
٠									۰
•	Bessel's correction - an unbiased way to estimate variance	• •	•	•	•	••••	•	•	•
•		•	•		•	• •	•	•	۰
•		•	•		٠	• •	٠	٠	٠
٠		•	۰	٠	٠	• •	٠	•	٠

•	•)	54	مر ر	•	V	<u>ہ</u>	6 (גו	-5	>		•	MATH MODEL
•							V MYZ W							•	Assume Assume CAN WE COMPUTE?
•	*	•	•						•	٠	•			•	DO WE TRUST SIMPLE
•	•	•	•	•	•	•	•	•	•	•		-	Τ∩	da	
•	•	0	•	•	•	•	•	•	•	•	•				ay's skills:
0	•	•	•	•	0	0	0	•	0	•	•	-	· ir	nte	ay's skills: erpret / evaluate model assumptions in the context of a problem
•	0	0	0	•	•	•	· · ·	•	•	•	•	-	· ir	nte	ay's skills:
•	•	0 0 0 0	•	•	•	0 0 0 0	0 0 0 0	•	•	0	•	-	· ir	nte	ay's skills: erpret / evaluate model assumptions in the context of a problem timate model parameters
•	0 0 0 0	0 0 0 0	•	•	•	•	•	•	•	0 0 0 0 0	0 0 0 0	-	· ir	nte	ay's skills: erpret / evaluate model assumptions in the context of a problem timate model parameters - Poisson:
0 0 0 0	0 0 0 0	0 0 0 0	•	•	•	• • • •	• • • • •	• • • • •	•	0 0 0 0 0 0	0 0 0 0 0	-	· ir	nte	ay's skills: erpret / evaluate model assumptions in the context of a problem timate model parameters - Poisson: lambda: the "rate" at which events occur - Binomial n: number of trials
•	0 0 0 0 0	0 0 0 0 0		•	• • • •	• • • • •		• • • • •	•	0 0 0 0 0 0 0 0 0	- - - - - - - - - - - - - - - - - - -	-	· ir	nte	ay's skills: erpret / evaluate model assumptions in the context of a problem timate model parameters - Poisson: lambda: the "rate" at which events occur - Binomial
•	0 0 0 0 0	0 0 0 0 0 0 0	•	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	• • • • • •	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0	。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。	-	· ir	nte	ay's skills: erpret / evaluate model assumptions in the context of a problem timate model parameters - Poisson: lambda: the "rate" at which events occur - Binomial n: number of trials

Modeling with Binomial Distribut	ion	0 0 0	
Binomial: How many "successes" occur in binary trials?	N total	• • •	Application: A basketball player will take 100 free throws next season, how many do they make?
Parameters: n=number of trials		· · ·	Model: Binomial n=100 p=average free throws from this season
Assumes:		• • •	Assumption violations:
 output of each trial is binary outcome of every two trials is each trial is "identically distrib - has the same prob of suc 	uted"	nt	2. local memory (made shot 30 secs ago increases likelihood of another)
	• • • • •	0 0 0	3. player more likely to make some free throws than others (game context, injury)
	• • • • •	• • •	(game context, injury)
			1. solid assumption
· · · · · · · · · · · · · · · · ·	• • • • •	• • •	

					blication: w many groups will walk into store in any	
Poisson:	• •	٠	• •	ho	ar they re open during the week?	
How many events occur in a given time window?	• •	0	• •	• •		• •
					del:	
lambda = "rate" of how many events	S •	•	• •	lar	bda = average of how many customers walke store per hour during the previous year	d ·
	• •	•	• •			0 0
-					sumption violations:	• •
impact occurance of future events	• •			2.	store is busier at different times during the wee	ek -
impact occurance of future events 2. Rate that events are expected	• •	•	• •	2. 1.	store is busier at different times during the wee wo groups friends meet in the store	0 0
impact occurance of future events 2. Rate that events are expected to occur is constant	• • • •	•	• •	2.	store is busier at different times during the wee wo groups friends meet in the store	• •
impact occurance of future events 2. Rate that events are expected to occur is constant	• • • • • •	•	• • • • • •	2.	store is busier at different times during the wee wo groups friends meet in the store	• • • •
impact occurance of future events 2. Rate that events are expected to occur is constant	• • • • • •	•	• •	2.	store is busier at different times during the wee wo groups friends meet in the store	• •
impact occurance of future events 2. Rate that events are expected to occur is constant		•	• • • • • • • • •	2.	store is busier at different times during the wee wo groups friends meet in the store	• • •

*		۰	*	•		
٠	٠	۰	٠	•		
•	٠	0		0		
	۰	۰		0	The Poisson Rate Parameter scales linearly	
	۰	•	•	•		
•	٠	۰	•	۰	· If · · · · · · · · · · · · · · · · · ·	
•	٠	۰	٠	۰		
	٠	0		0	the number of car accidents a day in all of Boston is poisson distributed	
•	0	۰			with lambda = 24	
		•		•		
٠	٠	۰	•	۰	then	
•	•	0		0		
•	•	•	•	•	the number of car accidents an hour in all of Boston is Poisson distributed	
•	•	•	•	0	with $lambda = 1$	
•	•	•	•	•		
•	•	•	•	•		
	,					
		•				

	•
The following table gives the number of groups entering a store each day:	•
Mon: 32 Tues: 40 Weds: 20 Thurs: 42 Fri: 41 Sat: 102 Sun 103	•
1. Assuming the store is open 8 hours a day, build a Poisson Distribution (estimate lambda) over the number of gorups entering each hour.	•
2. Assuming your model, compute the probability that exactly 20 groups enter the store in an hour	•
 Does the data above seem consistent with the Poisson assumptions? Rate that events are expected to occur is constant Occurance of one event doesn't impact occurance of future events 	• • •
	0
	۰
	•
	•

Mon: 32 Tues: 40 Weds: 20 Thurs: 42 Fri: 41	1 Sat: 102 Sun 103
1 33+40+20+43+41+102+10	
· · · · · · · · · · · · · · · · · · ·	7.8 Hours
	1= 6.8 GROUPS/HR
$\bigcirc () \land () $	$\lambda = 6.8$
· · · · · · · · · · · · · · · · · · ·	2

	۰	۰	۰		۰	•		•	•	•	•	•		•	۰	۰			•		•			۰	•							•	•			۰	•	•					
٠	•	٠	•	•	٠	٠		٠	٠	٠	٠	•	٠	٠	•	•	•	٠	٠	٠	•	•	•	٠	٠	•	٠	٠	٠	•	•	•	٠	٠	•	•	•	٠	•	•		٠	٠
٠	٠				٠	٠		٠	•	٠	٠	٠	٠	٠	•	٠	•	٠	٠	٠	•	٠	•	٠	٠	•	٠	•	٠	•	٠	•	٠	٠	٠		٠	٠	٠	•		٠	٠
	•				0				•	•		•	0	•	•			0	•	0	•			•	0		0			•	•	•	۰		•		•	0		•			0
	•	•			۰			•																																			•
٠	٠				٠	•		٦ŀ	nin	k a	alo	ne		٠	•		•	٠	٠	٠	•	٠		•	•	٠	٠		•	•	•	•	٠	٠	•		٠	٠	•	•			
٠	٠			*	٠	٠			•	•	٠	•	٠						٠							*	٠	٠	٠	•	•	•	٠	٠		•	•	٠	•	•	٠	٠	•
٠	٠	٠	٠	٠	٠	٠		Yc	bu	ob	se	r.v	es	SOI	me	e.ti	sh	ir	ı.a	n	эw	/ .p	on	d:	٠		٠	٠	۰	•	۰	•	٠	٠	۰		٠	٠	٠	•		٠	٠
	•	•	•	۰	۰	۰		•			-						•	0	۰	٠	•		•	•			0	۰	•		•		•	•	•	•	•	•	•	•	•	•	•
																																											٠
٠	۰	٠	٠	٠	٠	۰		C	one	ə.5	p p	ou	nc	1.1	sh	٠	•		٠	٠	•	•	*	•	٠	•		٠	۰	•	•	•	۰	۰	•	•	۰	۰		•		٠	٠
٠	•	٠		٠	٠	۰	*	Ŀ.	٠	٠	•	÷.,	٠	٠			•		•	•	٠	*	٠	•	•	i.	•	*	•	·	•	۰	•	÷			۰	۰	٠	٠	٠	٠	٠
	•																																										
	0																																										
											in '	the	e, p	oor	nd	yc	ju'	d		tcł	?.ו	•		•	۰	•	0	٠	0	0	0	0	•	0	0	•		۰	0				
					•	•	•		fis	sh	in '	the	e p	100	nd	yc	Su'	d	ca	tcł	ן.? י	0	•	•	•	•	•	•	0	0	0	0	•	•	0	•	•	•	•	•			
					•	•	•	of	fis	sh	in '	the	e p	100 - -	nd	yc	5u'	d	ca	tcł	ן.? י	0	•	0	•	•	•	•	•	0	0	0	0	•	•	•	•	•	•	0			
					•	•	•	of	fis	sh	in '	the	e p	100 - -	nd	ус	bu'	d	ca	tcł	ו? י	•	•	0 0 0	0 0 0	0	•	•	0 0 0	0	0	0	0 0 0	•	•	•	•	•	•	0			
					•	•	•	of	fis	sh	in '	the	e p	noc	nd	yc	bu'	d	ca	tcł	ן? י	•	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0	0 0 0	•	•	•	•	0			
					•	•	•	of	fis	sh	in '	the	• • •	noc	nd	ус 	5u'	• • •	ca		?.	•	0 0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0	•	0 0 0	0 0 0	0 0 0	0 0 0		•	0 0 0	•	•	•	•	0			
					•	•	•	of	fis	sh	in '	the		noc	nd	yc	bu'	d	cat		?	•	•	0 0 0 0	0 0 0 0	• • •	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0		•	0 0 0	•	•	•	•	0			

Observations vs Ground Truth	
Observed data: Collected in an experiment	Ground Truth data: Describes the precise, absolutely true
	state - rarely known
F134 WE1047	LET F BE RANDOM VARIADU
$x_{1}=3$ $x_{2}=7$ $x_{3}=5$	Fish WEIGHT IN POND
	ELF]=?
	· · · · · · · · · · · · · · · · · · ·

Estimators	
An Estimator is a function of observations which ou variable.	tputs an estimate of some ground truth
F134 WE1047	LET F BE RANDOM VARIADU Fish weight in POND
$X_{1}=3$ $X_{2}=7$ $X_{3}=5$	Fish WEIGHT IN POND
X1+X2+X3 3+7+5_	E[F]=?
N ⁼ 3	

"SAMPLE MEAN"	
DX= Xi is AN ESTIMATOR	For E[x]
NTT	
TOTAL	
OBSERVATIONS	
	SAME NOTATION
EAON OBSERNATION GETS LOWERCASE N (INDEX	For our comes of
EAN OBSERVATION NOEX	EXPERIMENT
GETS LOWER CASE "I	
· · · · · · · · · · · · · · · · · · ·	

LIGHTENING ICA (IN YOUR HEAD)		· · · · · · · ·
You observe fish Neronty	• • • • • • •	· · · · · · · ·
X,=10 X3=30 X5=30		· · · · · · · ·
- ESTIMATE E[x] w/ SAMPLE	MEAN	· · · · · · · · ·
-> ARE YOU CERTAIN THIS ESTIM EXAMINY EQUAL TO E[x]?	mate is	· · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • •	· · · · · · · ·

ESTIMATING	EXOCUTED VALUE				0
5.	prose you obser	ve F.54	NELOYT	>	•
· · · · · · · · · · ·	X.= 3 X.	- 5	x>= 4	Xi is ourcom	
$\vec{x} = \frac{1}{N}$	Extination i		€[×]	= <u>z</u> x; P(x;)
Samole Mean	Xi IS OBSERVATION	 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 	· · · · · · · · ·		0 0 0 0
		• • • • • • •			•

ESTIMATING VAN	MANCE			0 0
SUPPOSE	YOU OBSERVE	Fisy NE	-423	0 0 0 0
Χ.	= 3 X3 = 5	x,=	4 	• •
$\frac{1}{0} = \frac{1}{N} \neq (X_i - \overline{X}_i)$	d Estimates	NAD (x) =	z (Xi-E[*]) P(x	
C "SAMPO			. .	• • • • • •

COMPOTE	SAMPLE MEAN + "SAMPLE COJARIANCE" OF SIX-SIDED DIE ROLLY
X.o = 3	X, = 2 X, = 3 X, = 1
	$ \begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$

 $\overline{X} = \frac{1}{N} \leq X_{i} = \frac{3+2+3+3+1}{5} = \frac{1}{5} = 2.2$ $\hat{O}_{BIAS}^{a} = \frac{1}{N} \not\leq (x_{i} - \overline{x})^{a}$ $=\frac{1}{N}\left((3-3)^{2}+(3-3$ = .56 Xo=3 X1=2 X3=3 X1=2 X3=1

2	EMEMBER;
• •	IF X is FAIR SIX SIDED DIE NOLL
• •	E[x] = Z x:P(xi) = '6.1 + 16.2 + 16.3 * 16.4 * 16.5 * 16.6
• •	$= 3.5$ $E[x^{3}] = \sum_{i} x_{i}^{2} P(x_{i}) = \frac{1}{6} \cdot \frac{1}{7} + \frac{1}{6} \cdot \frac{3}{7} + \frac{1}{6} \cdot \frac{1}{7} + \frac{1}{6} \cdot \frac{1}{7} + \frac{1}{6} \cdot \frac{1}{7} + \frac{1}{6} \cdot \frac{1}{7} $
0 0 0 0	= 1/6 1 + 4 + 9 + 16 + 36 + 36
• •	$= \frac{2}{\sqrt{2}}$
• •	$VAR(x) = E[x^3] - E[x]^2 = \frac{91}{6} - 3.5^2 = 2.9167$

	۰	•	•		۰	٠	•	٠	٠	٠	۰	۰	٠	•	٠	۰	•	•	•	• •	٠	۰	۰	•	۰	•	۰	•	٠	٠	• •	۰	۰		۰	•	۰	•		۰	۰	٠
٠	٠	٠	٠	•	٠	٠	•	٠	•	٠	٠	٠	٠	۰	٠	٠	•	•	•	• •	٠	•	٠	٠	٠	٠	•	•	٠	•	• •	۰	۰	•	٠	٠	٠	٠	•	٠	٠	۰
•	٠	٠	٠	•	۰	٠	•	•	0	٠	٠	٠	٠	•	٠	۰	•	•	•	• •	٠	۰	۰	٠	٠	٠	٠	٠	٠	•	• •	۰	٠	•	۰	۰	•	٠	•	٠	٠	۰
•	۰	0	•	•	0	•	0	۰	0	۰	۰	0	•	•	0	0	•	•	•	• •	۰	0	0	0	•	0	0	0	•	0	• •	0	•	•	0	0	۰	•		0	0	0
•	•	0	•	•	0	•	0	۰		۰	۰	0	٠		۰	0	•	•	•	• •	•	0	0	•	•	•	0	0	•	•	• •	0	•	•	0	0	۰	•	•	•	0	۰
٠	٠	٠	٠	*	٠	۰	٠	٠	•	٠	٠	٠	٠		٠	۰	•	•	•	• •	٠	۰	٠	•	۰	٠	٠	•	۰	٠	• •	۰	۰	٠	۰	۰	٠	٠	٠	٠	٠	۰
•	۰	•	•	•	۰	٠	٠	٠	0	٠	٠	۰	٠	•	۰	•	•	•	•	• •	•	•	۰	•	•	۰	0	•	•	۰	• •	•	۰	•	•	•	٠	۰	•	۰	•	۰
•	۰	0	•		0	۰	۰	٠		۰	۰	0	٠	•		0	•	•	•	• •	•	0	0	•	•	•	0	•	•	0	• •	0	۰		0	0	۰	•		0	0	۰
۰	۰	۰	•			0	•		0	٠	۰	•	\mathbf{h}	0	۰	0	0		•	• •	Ņ	Ň		۰	0		•	•		•	• •	•	0		•	۰	٠	0	0		•	۰
•	0	۰	۰		•	•	۰	۰	0	۰	۰	•	L	Ve	: د	Ś	= 1	· ` (• •	N	Л	1	ti.	ĴP	ন	ic	ア	J	•	• •	•	0	•	•	•	۰	•	•	•	•	0
•	۰	0	•	•	•	۰	٠	٠	۰	٠	۰	0	÷)	• •		ν. ι		•		•		•	•	0	• •	0	•	•	0	0	۰	•	•		0	۰
٠	۰	•			•	٠	•		۰	٠	۰	•	•	0	۰	1	^	•	•	• •		Υ.	۰	۰	۰	•	۰	۰	•	•	• •	•	۰	•	0	•	۰	•	•		٠	۰
۰	۰	•	٠	•	۰	٠	۰	۰	0	۰	۰	0	•	•	۰	1	Ŷ	۲Y	7.	\ 0	ン	-1)	0	0	۰	٠	•	٠	۰	•	• •	0	0	0	۰	۰	۰	٠		0	0	۰
•	0	0	•	•	•	0	0	0	•	•	•	0	•	•	•		ſ	2	7.	\ 0	5)	0	0	•	•	•	•	•	•	•••	•	•	•	•	•	0	0	•	0	0	•
0	0	0	•	0	0	0	0	0	0	0	0	•	0	0	0		ſ	Y	Tr	\ 0	ン)	0	•	0	•	•	•	•	•	• •	•	0	0	0	0	0	•	•	0	0	0
0	•	0 0 0	0	0	0 0	•	•	•	•	0	0 0 0	0	•	0	0			<u>א</u> יי	Tr-	\ 0	2)	0 0 0	0	0	0	0	0	0	•	• • • •	0	0	0	0	0	0	0	•	0	0	•
0 0 0	0 0 0	0 0 0	•	0 0 0	0 0 0	• • •	0 0 0	0 0 0	0	0	0 0 0	0 0 0	•	0	•		ſ	<u>א</u>	T		2)	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0	0 0 0	0 0 0	• • • • • •	0 0 0	0 0 0	0	0 0 0	0 0 0	0 0 0	0	0	0	0 0 0	0 0 0
0 0 0	0 0 0	•	0 0 0 0	•	0 0 0	0 0 0	0 0 0	0	0 0 0 0 0	0 0 0 0	0 0 0	0	•	0 0 0 0	•			רא	T		\		0 0 0 0	0 0 0	0	0 0 0	0 0 0	•	0	0 0 0	• • • • • •	0 0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0	0 0 0 0	0 0 0	0 0 0	0 0 0
•	0 0 0 0	0 0 0 0	•	•	0 0 0 0	•	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0	•	•	0 0 0 0		· •	אר			\)	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0	•	0	• • • •	• • • • • • • • •	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0	0 0 0 0	0 0 0	0 0 0 0	•
•	•	•	•	•	0 0 0 0			•	0 0 0 0	•	•	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	•	•	•			אר 			2		0	0	•	0	0 0 0 0 0	•	0	•	。	• • • • • • • • • • • • • • • • • • • •	0 0 0 0	0 0 0 0	•	•	0	0	0 0 0 0 0 0	0	•	•
•	•		•	•	•	•	•	•	•	•	•	• • • • • •	•	•	•			אר 			2)	0 0 0 0	•	•	•	•	•	· · ·	•		• • • • • • • • • • • • • • • • • • • •	0 0 0 0 0 0		•	•	•	•	• • • • • • •	•	•	• • • • •

UNBIASED ESTIMATORS
An estimator is unbiased if its expected value equals the ground truth target.
Is the sample mean an unbiased estimator? yes, let's prove it:
$E[\overline{X}] = E[\frac{1}{N} \leq X_i] = \frac{1}{N} (E[X_0] + E[X_i] + \dots + E[X_n])$
$= \frac{1}{N} \left(E[x] + E[x]^{+} \dots + E[x]^{+} \right)$
$= E \mathcal{L} \times \mathcal{J}$

. .	· · · · · · · · · · · · · · · · · · ·	
E C	$\frac{1}{N} \underset{i}{\lesssim} (x_i - \overline{x})^2$	An (x)
0 0 0 0 0 0 0 0		
		 ••••••••••••
		 • • • • • • • • • • • • •
0 0 0 0 0 0 0 0		
		 • • • • • • • • • • • • •

•	An unbiased estimator of variance (Bessel's Correction)
0	Claim:
•	OBIAS = 1 Z (Xi-X) is BIASED (Too SMALL)
۰	
• • • •	(WE WON'T PROVE IT Bot LET'S TEST IN PYTHON)

BESSEL	5 CORRECTION	: MOTIVATION		
NONY 15	A D BIAS	= 1 2	$(\chi_i - \chi)$	OFTEN SMALLER THAN VAR(x)?
				LOSE AS POSSIBLE
	 3 4 5		× M.W.M.17	εες <u>ξ</u> (χι- x)

•	C,	A (3:	0	ne	m	or	e t	rip) to	o tł	he	р	on	d	•	•	•	•	•	•	• •	• •	•	•	•	•	•	•	•	• •	• •	•	•	•	•	•	•	0	•	•	•
• 1	Fh	e	fol	llo	wir	ng	ar	e	we	eig	hts	s; i	n	ро	ur	nds	s; c	of f	isł	י א	ou	o	ose	erv	e ii	n∙a	p	one	d:	•	• •	• •	•	•	•	•	•	•		•	•	•
• 3	3,	5,	7,	-1	, 9), •E	3, 2	2	0	•	0	0	•	0	•	•	0	•	•	0	0	• •	• •	0	0	•	•	•	0	0		• •	•	0	0	0	0	0	0	0	0	•
. [_e	t >	(b	e	a I	Ra	inc	loc	'n	Va	ria	bl	e r	rep	ore	ese	ent	ing	g∙tl	he	we	eig	ht o	of a	a f	ish	in	th	is	po	nd		•	•	•	•	0	•	•	•	•	•
•	1.	Gi	ve	a	n I	un	bia	ase	əd	es	stir	na	te	of	Ē	[x]	•				.\	•	مح	•	X 1		•	3	.+ '	5		7	+	t	q	-•	گ)	•		•
· ·		α	N/O	\sim	5		hia	~ ~ .	<u> </u>			\sim	+-		FΛ/	or!	/、/				_			-	6 🔨 '			-												æ		
. 4	<u>2</u> .	G	ve	; a	.11	un	Dia	ase	a	es	stir	na	lie		• V	an	(X)		•	•	. L	J		•	•	•	•		•	•	• •		L	7.			•	•) -
. 3	3.	Sι	Idr	ро	se	a	fis	sh	ро	ps	s h	is	he	ac	a a	bc	ove	e th	ne	su	rfa	ace	e ar	nd	cla	im	S,	"O	ur	a	/er	ag	e	we	igł	nt (• •		•
. 3	3.	Sι	Idr	ро	se	a	fis	sh	ро	ps	s h	is	he	ac	a a	bc	ove	e th	ne	su	rfa	ace	e ar	nd	cla	im	S,	"O	ur	a	/er	ag	e	we	igł	nt (•		•
. 3	3.	Sι	Idr	ро	se	a	fis	sh	ро	ps	s h	is	he	ac	a a	bc	ove	e th	ne	su	rfa	ace	e ar	nd	cla	im	S,	"O	ur	a	/er	ag	e	we	igł	nt (• • •		•
. 3	3.	Sι	Idr	ро	se	a	fis	sh	ро	ps	s h	is	he	ac	a a	bc	ove	e th	ne	su	rfa	ace	e ar	nd	cla	im	S,	"O	ur	a	/er	ag	e	we	igł	nt (•		•
. 3	3.	Sι	Idr	ро	se	a	fis	sh	ро	ps	s h	is	he	ac	a a	bc	ove	e th	ne	su	rfa	ace	e ar	nd	cla	im	S,	"O	ur	a	/er	ag	e	we	igł	nt (? • • • • • •	•
. 3	3.	Sι	Idr	ро	se	a	fis	sh	ро	ps	s h	is	he	ac	a a	bc	ove	e th	ne	su	rfa	ace	e ar	nd	cla	im	S,	"O	ur	a	/er	ag	e	we	igł	nt (N	•

A J OBIAS	$=\frac{1}{2}\sum_{i}\left(\chi_{i}-\overline{\chi}\right)$		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		• • • •
	$\frac{1}{N} \leq (\chi; -E\chi)$		· · · · ·	· · · ·	 	0 0 0
	$N \stackrel{<}{\leftarrow} C^{N} \stackrel{\sim}{\leftarrow} C^{N}$		· · · · ·	• • • • • • • • • • •	 	•
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · ·	• • • • • • • •	• • •	· · · · ·	0
· · · · · · · · · ·		· · · · · · · · ·	~ • • • •	• • •	- • • • • •	•

3 3571982 $\hat{O}_{\text{BESSEL}} = \frac{1}{N-1} \stackrel{>}{\geq} \left(\chi_{i} - \chi_{i} \right)$ $= \frac{1}{7-1} \left((3-5)^{2} + (5-5)^{2} + (7-5)^{2} + (1-5)^{2} + (4-5)^{2} + (8-5)^{2} + (3-5)^{2} \right)$ = 9,67

		$=\frac{1}{N}\sum_{i=1}^{N}$	$(\chi;-E[x])$ 357(982
· · · ·		$=\frac{1}{7}\left(\frac{3}{3}\right)$	
· · ·	· · · ·		$+(9-6)^{2}+(8-6)^{2}+(3-6)^{2})$
• • •			