Amin:
Swot class
Sen 3 Finals Sched

Standand Nonmac Distridutioñ

Let X be a normally distributed random variable with mean 7 and variance 10. Identify the
linear function of X so that it has a "standard" normal distribution (mean 0 and variance 1).

$$
\begin{array}{ll}
X \sim N\left(N=7,0^{\circ}=10\right) & x_{7}=11 \\
z=\frac{x-N}{\sigma}=\frac{x-7}{\sqrt{10}} \sim N(0,1) & \frac{11-7}{\sqrt{10}}=\frac{4}{\sqrt{10}}=1.2
\end{array}
$$

CMI-Saune D.STR•BuTION
LET Zi $\sim N(0,1)$ BE ID sRANOARD Nonmal

CMi-SQuane "Goodness of Fit" TEST
ARE THESE OUTCOMES OF A G-SIDED DIE FAIR?
Do these $N=36$ outcomes come from a fair (uniform) 6-sided die? H_{0} : Pros of Ency (we sort outcomes below so they're easier to work with): outcome is :16 Hi: No irs Not $1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,5,5,5,5,5,5,5,6,6,6,6,6$

Oi How MNNY TIMES DID wE OBSERVE OJ T come i?

Assumino Ho ($0, \mathrm{E}$ is fair in tus Ex) want is EXPECTED CONAT of EAA OJTCOME?
$E_{i}=N \cdot \rho_{i}=36 \cdot \frac{1}{6}=6$ for all ourcancs $E:+\infty$ Torac ourcones
(36 in Tus Ex)

Prod of eam outcome under H_{0}

Contingency table $+X^{\partial}$ test statistic

ICA 1:

- Does there exist a minimum or maximum chi-squared statistic?
- Describe what kind of $\mathrm{O} i$ i and E i achieve this min or max chi-squared statistic.
- Which values of the chi-squared stat are most typical of the null hypothesis? Justify your response with one or two sentences.
chi-square $=0$ happens only when each outcome is observed as many times as its expected

chi-square $=0$ happens only when each outcome is observed as many times as its expected the chi-square stat closer to zero are more consistent with the null hypothesis

Modeling Nil Hyporaedis
Assuming the null hypothesis (die is fair) then the chi square statistic follows a chi square distribution with $k=$ size of sample space -1 degrees of freedom ($\mathrm{df}=6-1=5$ in this example)

Computing P-value with Chi-Squared Goodness of Fit
Remember: P-value is prob of all outcomes which are less consistent with null hypothesis

Assuming Al $\quad X^{2}=5.3$ is x^{2} Distabores wry of $=5$

observe close to
5.3 ExpEcted more consistent with $\mathrm{H}_{-} \mathrm{O}$

Smectic x^{2}

Lance x^{2} observe far FRom ExPECTED less consistent with $\mathrm{H}_{-} \mathrm{O}$

Finalize Chin example

$P_{V A C}>\alpha=.05 \sim$ SHRUG
Don't Reject Ho
... Die cosid be far
$P_{S A C}<\alpha=.05$
REJECT H_{0}, CLAM M W.
\ldots DIE IS NOT FAIR

A "silly die" is supposed to roll higher outcomes more often than others:

OUR come	1	a	3	4	5	6
Prob	$1 / \partial 1$	$\partial / \partial 1$	$3 / \partial 1$	$4 / 31$	$5 / \partial 1$	$6 / \partial 1$

$1,1,1,2,2,2,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6$

Cul-Savare "Binning"
X reauines a fiwite sample sonce We can "Bin" a Distribution:

Expecare

Cuoosinc Bons impaces Analsis sensimivity

