if you have HW5 questions - I have tine set a side Northeastern at the beginning Ss 2810: Mathematics of Da
Bias, estimators, bessel's correction, Bernoulli trials

Is the following problem best modeled with a binomial distribution or a poisson distribution?

Ls poisson \rightarrow time, $\#$ of occurrences I want to know what the probability is that I will observe four cars honking on my 7 \longrightarrow walk to the in therning while I go to work.
$\rightarrow \lambda$ a prob. of hearing a car honk in a 7 min. period

Admin: ICAs

- Based on the feedback from your Canvas ICAs....
- most of you either felt *shrug* or better about the Canvas ICAs than the gradescope ICAs
- I'll be continuing to stop class 10 minutes early and have you all do the Canvas ICAs

Admin: Tests

- Test 1: if you haven't checked your grade please do so now. There was a segmenting issue that caused some tests to get ignored in gradescopeplease send me an email ASAP if you have no grade for *either* quiz1_01 or quiz1_02

HW 5: clarifications
Section 1 -Late day count on Canvas -up to date

- Remember -we gave you an extra late day to account for the late release of HW 5 -and so that we could have class together between the release and the due date.
- I'm going over whatever clarifications you'd like for HW 5 now
- You won't get credit for unused late days at the end of the semester
- Linearity of expectation/variance
- holds for independent variables - both $E[X]$ and $\operatorname{Var}(X)$
- for dependent variables, holds for expectation but not variance

Expected Value - from lec 13

What is the expected value of the total number of donuts that Felix eats in a given day?

$$
\begin{aligned}
& E[X]=E\left[D_{m}+D_{a}\right]=0 * P(X=0)+1 * P(X=1)+2 * P(X=2)+3 * P(X=3)+4 * P(X=4) \\
& E[X]=E\left[D_{m}+D_{a}\right]=0 * 0.5+1 * 0+2 * 0.5+3 * 0+4 * 0=1
\end{aligned}
$$

What is the expected value of the total number of donuts that 3 Felixes eat in a given day?
$E[3 X]=E[X]+E[X]+E[X]$
$=3$
donuts $=0$ donuts =1 donuts = 2

Da
donuts $=0$
donuts $=1$
donuts $=2$

0.5	0	0.05
0	0.25	0
0.2	0	0

Expected Value - from lec 13

$$
\begin{aligned}
& \text { What about the variance? } \\
& \operatorname{Var}(X)=\sum_{x} P(X=x) *(x-E[X])^{2}
\end{aligned}
$$

$$
\operatorname{Var}\left(D_{m}+D_{a}\right)=\operatorname{Var}\left(D_{m}\right)+
$$

$$
\text { or, } \operatorname{Var}(X)=E\left[X^{2}\right]-E[X]^{2}
$$

$$
\operatorname{Var}\left(D_{m}+D_{a}\right)=E\left[X^{2}\right]-E[X]^{2}=\left(0^{2} * 0.5+1^{2} * 0+2^{2} * 0.5+3^{2} * 0+4^{2} * 0\right)-1^{2}=2-1=1
$$

$$
\text { What about the variance of the total number of donuts that } 3 \text { Felixes eat in a given }
$$ day?

$\operatorname{Var}(3 X) \neq \operatorname{Var}(X)+\operatorname{Var}(X)+\operatorname{Var}(X)$ (for dependent variables, this does not hold)
BUT! we are multiplying by a constant....
$\operatorname{Var}(c X)=c^{2} \operatorname{Var}(X)=9 * 1=9 \rightarrow$ means that the expected

Problem 2, part 6:
prob that the teams make the same \# of goals

1) model an Individual teams goals

$$
\begin{aligned}
& \text { 2) } P(\text { team } A=, \text { team } B=, \\
& P(\text { die } 1=6, \text { die } Z=6)=P(\text { die } 1=6) P(\text { die } Z=7)
\end{aligned}
$$

How to account for different orderings Lplook at distr., one ft these does that for you

Add variance w/ constant ind. R.V. ex. X and $Y /$ are coins $w /$ equal prob. distributions,

$$
\begin{aligned}
& E[x+y]=E[x]+E[y]=0.5+0.5=1 \\
& E[3(x+y)]=3(E[x]+E[y])=3
\end{aligned}
$$

so $E[C X]=C E[X]$ where c is a constant

$$
\begin{aligned}
& \operatorname{Var}(x+y)=E\left[(x+y)^{2}\right]-E[x+y]^{2} \\
& \operatorname{Var}(c(x+y))=\left[\left[(c(x+y))^{2}\right]-E[c(x+y)]^{2}\right.
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Var}(c(x+y)) & =E\left[c^{2}(x+y)^{2}\right]-E[c(x+y)]^{2} \\
& =c^{2} E\left[(x+y)^{2}\right]-(c E[x+y])^{2} \\
& =c^{2}\left(E\left[(x+y)^{2}\right]-E[x+y]^{2}\right) \\
& =c^{2} \operatorname{Var}(x+y)
\end{aligned}
$$

for both independent and dependent variables (we only need linearity of expectation)

Expectation/Variance/Standard Deviation

- Expected value is the average value that I expect to see after infinite random trials. written as $E[X]$.
- Variance is a measure of how far actual values are from their expected value. (Their "variability"). written as $\operatorname{Var}(X)$ or σ^{2}.
- Standard deviation is also a measure of the variation of a set of values. It has special properties when we are talking about normal distributions. written as σ.

$$
\operatorname{Var}(x)=\sigma^{2} \quad \operatorname{stadex}(x)=\sqrt{\operatorname{Var}(x)}
$$

Normal Distributions

- A normal distribution is a bell-shaped curve.
- Right now, we're just using it to ground σ.

Binomial distributions - ICA Question 1
What does a binomial distribution model?
\rightarrow two outcome
4 fixed probability
4 independenttrials

$$
P(x=k)=\binom{n}{k} p^{k}(1-p)^{n}{ }^{n}
$$

\# of
successes prob. of success

- model likelihood of sone \# of successes

What should the value of p be if we want to model the chances of a squirrel finding a nut that it buried last fall on any given day if we observe:

$$
\begin{aligned}
P\left(S_{q}=1\right) & =\binom{1}{1} \cdot 6(.4)^{0} \\
& =6 \\
P\left(S_{q}=1\right) & =\binom{365}{1} \cdot 6^{1}(.4)^{364}
\end{aligned}
$$

Poisson distributions - ICA Question $2 E[x]=\operatorname{Var}(x)=\lambda$
What does a Poisson distribution model?
Lo over a fixed time period

$$
P(x=k)=
$$

$G D$ \# of occurrences \rightarrow successes
events ane independent
ID two options
What should the value of λ be if we want to model the number of turkeys on the green line tracks on a given morning if we observe:
Mon - 3 turkeys
Tuesday - 5 turkeys
Wednesday - 0 turkeys
T_{D} between 8 am $+12_{\mathrm{pm}}$

$$
\lambda=\frac{8}{3}=2.667
$$

λ time period needs to match your model
$P(X=2)$ for 8 am - 9 am, hourly lambda $P(x=2)$ for $8 a m-12 P m, 4$-hourtande

Observing data

Observing data - estimators

- We'd like to know what the variance of the population is, but we only have our observed sample to work from.

Observing data - estimators

- We'd like to know what the variance of the population is, but we only have our observed sample to work from.

Observing data - estimators

- We'd like to know what the variance of the population is, but we only have our observed sample to work from.

Observing data - estimators

- Working with what we have, we'll calculate an estimate of the population variance $\sigma_{\text {mean }}^{2}$ by calculating "how far from the sample mean is each individual?"
- $\sigma_{\text {mean }}^{2}=\frac{1}{N} \sum_{i}\left(x_{i}-\bar{x}\right)^{2}$

$$
\begin{aligned}
& \frac{1}{4}\left((7.2-7.425)^{2}+\ldots t\right. \\
& \left.\quad(6-7.425)^{2}\right)=1.14
\end{aligned}
$$

Observed Stego length
7.2
9
7.5
6

Observing data - estimators

- But, is this estimate biased?
estivated
- In statistics, bias is the difference in the value of an expected parameter (like σ^{2}) and the real, ground truth value
- This was our estimate: σ^{2}
- $\underline{\sigma_{\text {mean }}^{2}}=\frac{1}{N} \sum_{i}\left(x_{i}-\bar{x}\right)^{2}$
$\begin{array}{cc}\frac{1}{4}\left((7.2-7.425)^{2}+(9-7.425)^{2}+(7.5-7.425)^{2}\right. \\ \sigma^{2} & b \\ \sigma^{2} & \sigma^{2}\end{array}$
of wive run out f degrees of
freed qu freed on

17

Observing data - estimators

- This was our estimate:
- $\sigma_{\text {mean }}^{2}=\frac{1}{N} \sum_{i}\left(x_{i}-\bar{x}\right)^{2}$
- $\frac{1}{4}\left((7.2-7.425)^{2}+(9-7.425)^{2}+(7.5-7.425)^{2}+(6-7.425)^{2}\right)=1.14$
- So the big question is $\sigma_{\text {mean }}^{2}=\sigma^{2}$? No!

Bessel's correction

- Our estimate was biased because $\sigma_{\text {mean }}^{2} \neq \sigma^{2}$
- Re-writing our estimate as:
- $\sigma_{\text {mean }}^{2}=\frac{N-1}{N} \sigma^{2}$
- We can now correct for the bias by multiplying our calculable but biased estimator by $\frac{N}{N-1}$
- $\sigma_{\text {bessel }}^{2}=\frac{H}{H-1}\left(\frac{N \angle 1}{\sigma_{m}} \sigma^{2}\right)$
- So the big question is $\sigma_{\text {bessel }}^{2}=\sigma^{2}$? Yes!

Bessel's correction

- Mathematically, $\sigma_{\text {bessel }}^{2}=\sigma^{2}$?
- Good news! We have an easier way to write down this correction:
- $\sigma_{\text {bessel }}^{2}=\left(\frac{1}{N-1}\right) \sum_{i}\left(x_{i}-\bar{x}\right)^{2}$

Bessel's Correction - ICA Question 3
What is the value of $\sigma_{\text {bessel }}^{2}$ for our population of stegosauruses given that $\bar{x}=7.425$?
7.2
$\sigma_{\text {bessel }}^{2}=\frac{1}{N-1} \sum_{i}\left(x_{i}-\bar{x}\right)^{2}$
Do we expect this to be langer or smaller than $\sigma_{\text {mean }}^{2}$? Lolarger

$$
\sigma_{\text {bethel }}^{2}=1.5225
$$

Observing data - sampling a population

- Finally, we observe 12 more stegosauruses
- How do we expect \bar{x} and $\sigma_{\text {bessel }}^{2}$ to act in relation to the underlying ground truth?
Lo should get closer to the ground truth $\rightarrow \bar{x}, \sigma_{\text {bessel }}^{2}$
\rightarrow law of large \#S
ID but! $\rho 2$ is not so many $\rightarrow 1000$ move is letter

Bessel's Correction - ICA Question 4

Say that the underlying ground truth $E[X]$ is revealed to you. Is your calculated variance with the true expected value going to be closer to $\sigma_{\text {bessel }}^{2}$ or $\sigma_{\text {mean }}^{2}$? Do we have any guarantees?
\rightarrow true, unbiased biased \rightarrow withe manically, B. σ^{2} means

$$
\sigma_{\text {mean }}^{2} \neq \sigma^{2}
$$

(C.)no guarantee

Break time! buck at 1:10
-We'll break for \qquad 13 minutes

- stretch, get water, etc
- Fill out the ICA quiz on canvas. Passcode: "water"
- (you can ask me any other questions you have as well)

Bernoulli Trials

- What is a Bernoulli trial?
- !vocab alert! Bernoulli trials are also called binomial trials
- Independent, repeated trials of an experiment with exactly two outcomes.

Lo flipping a coin many times

- Wait, how is this different than a binomial distribution?

Io "creates" the exp. data underlying a binomial distribution

Binomial distributions

- For a binomial distribution, we assume:
- Each underlying Bernoulli trial is independent
- Each event being summed is in fact a Bernoulli trial
- Each Bernoulli trial is identically distributed $L_{D P} P$ is the sane across trials

Bernoulli experiments

- A Bernoulli experiment is modeled as $B(n, p)$ where n is the number of trials and p is the probability of success.
- $B(n, p)=\binom{n}{k} p^{k}(1-p)^{n-k}$
- This Bernoulli experiment produces a binomial disto. that we can evaluate to answer the same questions that we were answering last lecture

Bernoulli experiments

- So, we want to estimate n and p so that we can evaluate this to answer questions like "what is the probability that two turtles are happy on one day?"

$$
B(2,0.6)=\binom{2}{k} 0.6^{k}(1-0.6)^{2-k}
$$

$$
B(2,0.6)=P(x=1)=\binom{2}{1} 0.6^{1} 0.4^{1}
$$

D means what ane the chances of \& turtle out of 2 being happy

Admin

Awe are different \widehat{A}

- On Thursday:
- I'll be releasing your mini-project description
- You'll have a combined HW 6 workshop + mini-project workshop
- We do expect you to attend in person if you are able to
- If you need to dial in, do expect to be showing us your work :)
- You *will* get ICA credit for attending and working diligently

Schedule

Turn in ICA 14 on Canvas (make sure that this is submitted by $2 \mathrm{pm}!$)
HW 5's final due date is on Tuesday
HW 6 will be released:
HW 6's official due date is March 20th. Come to class on Thursday so you don't have to work over break.

Mon	Tue	Wed	Thu	Fri	S Sun
Lecture 14 - estimators, bias HW 5 due @ 11:59pm	Felix OH Calendly	Felix OH Calendly	Felix OH Calendly Lecture 15 -mini-project descriptions, HW 6 work day (yes, you will get ICA credit for this day)		
SPRING BREAK					HW 6 due @ 11:59pm
Lecture 16 - normal distributions	Felix OH Calendly	Felix OH Calendly	Felix OH Calendly Lecture 17 - hypothesis testing		

More recommended resources on these topics

- YouTube: 3Blue1Brown Binomial distributions | Probabilities of probabilities, part 1 (still usefu!!)
- YouTube: Ben Lambert Estimating the population variance from a sample part one*
- Warning: this uses some notation that we haven't covered in class
- Wikipedia Bessel's Correction: https://en.wikipedia.org/wiki/ Bessel\%27s correction

